

Objective

Measuring Efficiency

What sorts of measures could we use? The following are all (sometimes) important:

- Running Time no one wants to wait too long for programs to execute
- Memory Used by Data (Storage Space) time is (sort of) unconstrained, but any computer can run out of memory
- Memory Used by Code an issue if a program is to be stored on a low-memory device (like a smart card)
- **Time to Code** —- programmers must be paid and software development usually has deadlines!

Our focus will be on *running time* and *storage space*.

How Do We Measure Efficiency?

How can we compare algorithms or programs?

Q Run the Code and Time the Execution.

Problem: Execution time is influenced by many factors:

Objective

- Hardware (How fast is the CPU? How many of them?)
- Compiler and System Software (Which OS?)
- *Simultaneous User Activity* (Potentially affected by the time of day when the program was executed)
- Choice of Input Data (Running times can vary on inputs, even inputs of the same "size")
- Programmer's Skill

Analyze the Code

Advantage: Only influenced by choice of data Disadvantage: Can be quite difficult!

We typically try to do both (analysis supported by execution timings).

Types of Analysis

What Will We Measure?

Most of the time, in this course, running time and storage space will be measured in an abstract *machine-independent* way.

Objective

Running Time:

- Number of primitive operations or "steps" (programming language statements) used
- Ignores: different costs between operations (eg. multiply vs. add)

Storage Space:

- Number of words of machine memory used, assuming each word can store the same (fixed) number of bits
- Ignores: memory hierarchy differences, eg. cache vs. main memory

How Do We Wish To Measure Resources?

We will try to measure the amount of resources (time or space) used as a function of the "input size." (defined in various ways, depending on the type of input considered).

Example: if the input is an *array*, the appropriate measure of input size is (usually):

• array length, i.e., number of elements

Example: if the input is a single *integer*, which can be virtually as large as we want, the appropriate measure of input size is:

• the bit-length of the integer, i.e., number of bits in its binary representation

Complication: executions of a program on different inputs *with the same size* frequently have different costs!

Computer Science 331

Mike Jacobson (University of Calgary)

Computer Science 331

Lectures #7-8 5 / 2

Types of Analysis

Worst-Case Analysis

Consider the *maximal* amount of resources (such as *longest* running time) used by the algorithm, on any input of a given size

Advantages of This Type of Analysis:

- upper bound on running time (guarantee that the algorithm will not take any longer for *any* inputs of the given size)
- for some algorithms, worst-case occurs fairly often (eg. searching an array for an element not in it)

Disadvantage of This Type of Analysis:

• for some cases, the worst case rarely occurs (eg. array in reverse order is the worst case for one variation of quicksort)

Types of Analysis

Average-Case Analysis

Mike Jacobson (University of Calgary)

Consider the **average** (or "expected") amount of resources (such as **average** running time) used by the algorithm, for an input of a given size

Advantage of This Type of Analysis:

• captures resource consumption for typical inputs

Disadvantages of This Type of Analysis:

- executions on some inputs of the given size can take *much* longer than the average case
- may be difficult to determine what the average case actually is some assumption about the distribution of the inputs is *always* needed

In some, but not all cases, the worst-case and average-case running times (or amount of storage space used) are approximately the same.

Lectures #7-8

Other Kinds of Analysis

Best-case Analysis:

- *minimal* amount of resources (such as *shortest* running time) used by the algorithm, on any input of a given size
- occasionally of interest, but usually together with other measures (eg. see whether best and worst cases running times are close)

Amortized Analysis:

- ratio of total cost of a sequence of operations to the number of operations in the sequence
- similar to average case, except that no assumptions about input distribution are required
- mostly beyond scope of the course, but some results will be mentioned

Objective and Strategy

Objective: use code (or pseudocode) to estimate the *worst-case running time* of a program (or algorithm).

Useful Values:

- Worst-case running time (exact)
- Upper and lower bounds on worst-case running time (easier, often sufficient)

Strategy: consider subprograms ...

• beginning with individual statements ...

Worst-Case Analysis of Running Time

- then considering progressively larger subprograms ...
- until the whole program has been considered.

Mike Jacobson (University of Calgary) Computer Science 331	Lectures #7-8 9 / 26	Mike Jacobson (University of Calgary)	Computer Science 331	Lectures #7-8 10	/ 26
Worst-Case Analysis of Running Time A Single Statement Case: Program is a Single Statement		Worst-Case Analysis of Running Time A Sequence of Subprograms Case: Program is a Sequence of Subprograms			
<pre>Example: x := 1 Amount to charge: 1 unit (eg. single arithmetic/Boolean opera assignment)</pre>	ation, comparison, or	Structure to Consider: S Worst-Case Running Tin • worst-case running tin • worst-case running tin	ne: If ne of S_1 is T_1 , and		
Example: x := y := 1 Amount to charge: 2 units (one per assignment) be careful with compound statements one line does not always equal one unit! 		 worst-case running time of 52 is 72, then worst-case running time of entire program is <i>at most:</i> T₁ + T₂ 			
		 Explanation (upper bound because): worst-case input to S₁ may not yield a worst-case input to T₂ 			

Case: Program is a Conditional Statement

Structure to Consider:

Worst-Case Running Time: if

- worst-case running time to evaluate c is T,
- worst-case running time of S_1 is T_1 , and
- worst-case running time of S_2 is T_2 ,

then

• worst-case running time of program is: $T + \max(T_1, T_2)$

Mike Jacobson (University of Calgary)

Computer Science 331

Worst-Case Analysis of Running Time A Loop

First Objective: Counting Executions of the Loop Body

Recall that a *Loop Variant* is an integer-valued function f_L of variables such that

- the value of *f*_L decreases by at least 1 each time loop body is executed;
- the test G is **false** if the value of f_L is ≤ 0

The *existence* of a loop variant implies that the loop terminates if each evaluation of G and each execution of the loop body terminates.

Useful fact: number of executions of loop body is *less than or equal to* the value of f_L immediately before execution of the loop begins

Case: Program is a Loop

Structure to Consider:

while *G* do *S* end while

We need to know:

- the worst-case cost to evaluate G
- the worst-case cost to execute S
- the maximum number of executions of the loop body

Problem:

• it is not even clear that this will halt!

Mike Jacobson (University of Calgary)

Computer Science 331

Lectures #7-8 14 / 2

Worst-Case Analysis of Running Time A Loop

Next Objective: Bounding Total Running Time

Suppose:

- Loop body is executed at most k times
- \bullet Worst-case cost for each evaluation of the loop test G is \leq \mathcal{T}_1
- Worst-case cost for each execution of the loop body S is $\leq T_2$

Then:

• Total cost for all evaluations of test G is at most: $(k+1)T_1$

Computer Science 331

- Total cost for all executions of loop body is at most: kT_2
- Therefore, the *total* cost to execute the loop is at most: $(k+1)T_1 + kT_2$

If cost of jth iteration of S is $T_2(j)$: $(k+1)T_1 + \sum_{j=1}^{n} T_2(j)$

Lectures #7-8

Example

Suppose A is an integer array with length n, key is an integer, and the following code is executed.

i := 0while ((i < n) and (A[i] <> key)) do i := i + 1end while

Loop Variant for this program's loop: f(n, i) = n - i

- *i* increases after each iteration, so f(n, i) decreases
- $f(n, i) \leq 0$ if $i \geq n$ and the loop terminates if $i \geq n$

What about 2nd condition in test? ignore (doesn't affect worst case)

Example, Continued

Maximum number of executions of the loop body:

• f(n,0) = n - 0 = n

Worst-case cost to evaluate test:

• 3 units (two comparisons, one Boolean operation), or constant c_1

Worst-case cost for an execution of the loop body:

• 2 units (one addition, one assignment), or constant c₂

Upper bound on worst-case cost to execute the loop:

- 3(n+1) + 2n = 5n + 3, or
- $c_1(n+1) + c_2n = d_1n + d_2$ for constants d_1, d_2

```
Mike Jacobson (University of Calgary)
                                Computer Science 331
                                                                                          Mike Jacobson (University of Calgary)
                                                                                                                           Computer Science 331
                                                               Lectures #7-8
                                                                                                                                                          Lectures #7-8
               Worst-Case Analysis of Running Time A Nested Loop
                                                                                                         Worst-Case Analysis of Running Time A Simple Recursive Program
                                                                                          Case: Program Calls Itself a Constant Number of Times
Case: Program is a Nested Loop
Structure to Consider:
                                                                                          Example: Fibonacci Number Program
  while G_1 do
     while G_2 do
                                                                                          int Fib(n)
        ς
                                                                                             if n == 0 then
     end while
                                                                                               return 0
  end while
                                                                                             else if n == 1 then
                                                                                               return 1
Method:
                                                                                             else
  • compute worst-case cost of inner loop as above
                                                                                               return Fib(n-1) + Fib(n-2)
                                                                                             end if
  • compute cost of outer loop using computed inner loop cost as the
     worst-case cost of the outer loop's body
```

Objective: Writing an Expression for the Running Time

Let T(n) be the number of steps used on input n. Then

$$T(n) \leq \begin{cases} 2 & \text{if } n = 0, \\ 3 & \text{if } n = 1, \\ 6 + T(n-1) + T(n-2) & \text{if } n \ge 2. \end{cases}$$

This is an example of a *recurrence relation*:

- T(n) expressed using the same function T evaluated at **smaller** inputs
- Explicit (non-recursive) values of *T* given for small inputs *n* (base cases)

Computer Science 331

 $T(2) \le 6 + T(1) + T(0) = 11, \ T(3) \le 6 + T(2) + T(1) = 20, \ \text{etc...}$

Analysis of Recursive Programs

The following exercises on computing bounds on T(n) can be solved using *mathematical induction*.

Exercises:

Use the above information to prove that

 $T(n) \le 6 \times 2^n - 6$

for every integer $n \ge 0$.

2 Use the above information to prove that

Finding a Lower Bound, Continued

$$T(n) \leq 6 \times \operatorname{fib}(n+1) - 6$$

Computer Science 331

for every integer $n \ge 0$.

Mike Jacobson (University of Calgary)

Worst-Case Analysis of Running Time Lower Bounds Worst-Case Analysis of Running Time Lower Bounds

Lectures #7-8

21/26

Finding a *Lower Bound*

Mike Jacobson (University of Calgary)

In order to prove that the worst-case running time of a program P is at least T, for input size N (for a fixed N):

- Find a valid input *I* of size *N* (where "valid" means that *P*'s precondition is satisfied)
- Count the number of steps used by *P* on input *I*
- *If* this number is greater than or equal to *T* then you have proved what we want!

Why This Works:

• worst-case cannot be less than the running time of any particular input

In order to prove that the worst-case running time of a program P is at least T(n), for a function T(n):

- Find a collection *I*₁, *I*₂, *I*₃, *I*₄, . . . of inputs, where *I_i* is a valid input of size *i* for all *i* ≥ 1
- Show that the number of steps used by P on input I_i is greater than or equal to T(i), for every integer i ≥ 1

Lectures #7-8

Worst-Case Analysis of Running Time Lower Bounds

A Common Mistake

Some people try to prove that the worst-case running time of a program P is at most T(n), for a function T(n), by doing the following:

- They give a collection *I*₁, *I*₂, *I*₃,... of inputs, where *I_i* is a valid input of size *i* for all *i* ≥ 1
- They show (generally, correctly) that the number of steps used by P on input I_i is less than or equal to T(i), for every integer i ≥ 1.
- They then conclude that the worst-case running time of P on inputs of size n is at most T(n) (for all n)

Why This is Incorrect:

• does not prove that there are no inputs for which the running time is larger

Further Reading ...

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein

References

Introduction to Algorithms

- available as an ebook
- includes *much* more material about this topic

Computer Science 331

Lectures #7-8 25 / 26

Mike Jacobson (University of Calgary)

Computer Science 331

Lectures #7-8 26 / 1