
Computer Science 331
Data Structures, Abstract Data Types, and Their Implementations

Mike Jacobson

Department of Computer Science
University of Calgary

Lecture #10

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #10 1 / 21

Outline

1 Overview

2 Data Types and ADTs
Data Types as Classes
New Classes From Old
ADTs as Interfaces

3 Java Collections Framework

4 A Few Odds and Ends

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #10 2 / 21

Overview

What This Lecture is About

Significant concepts defined in the first lecture:

Data Type: defined by

Data values and their representation
Operations defined on the data values and the implementation of these
operations

Abstract Data Type: In essence, a “specification of requirements”
that is satisfied by a data type

Data Structure: Provides a representation of the data values specified
by an ADT

Together with algorithms for an ADT’s operations, this provides an
implementation-independent description of a data type

Goal for Today: Discussion of support for these in Java

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #10 3 / 21

Overview

Information Hiding

Assumption:

Everyone in this class has already been introduced to the basic
principles of object-oriented development...

...although this introduction has, sometimes, been quite brief.

One Very Important Idea: Information Hiding

Allows various implementation decisions to be made gradually, in a
“piecemeal” fashion
All external access to the information maintained as part of data type
must be made using the data type’s operations
Consequence: “The rest of the system” does not need to know how
the data type is represented! ...and this data type, and “the rest of the
system,” can be developed independently

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #10 4 / 21

Data Types and ADTs Data Types as Classes

Example Data Type: A Simple Counter

Consider a “simple counter” used to keep track of information about the
current time, or progress toward some goal

Data Values:

limit: A positive integer — one more than the maximum value this
counter can represent. We will assume (or require) that this value is
small enough to be represented using Java’s int primitive data type
— so that

0 ≤ limit ≤ 2, 147, 483, 647

value: The current value being represented, i.e., an integer
between 0 and limit− 1 (inclusive)

Representation:

One might simply represent these by a pair of variables with names
limit and value, respectively

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #10 5 / 21

Data Types and ADTs Data Types as Classes

Example Data Type: A Simple Counter

Operations Might Include...

Creation: Set limit to be a given integer value (throwing an
IllegalArgumentException instead, if the supplied value is
negative or zero) and set value to be zero

Access: A method should be available to report the limit

Access: A method should be available to report the value

Modification: An advanceValue method should increment value,
throwing a LimitReachedException if this would cause value to
be equal to limit and setting the value of value back to 0 in this
case

Once implementations of these methods are supplied, the description of
this “data type” would be complete.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #10 6 / 21

Data Types and ADTs Data Types as Classes

Implementation as a Class

A class can be provided to implement this data type.

Implementation Details:

All instance variables (eg. forw limit and value) should be private
— only be accessible through the class’s methods

Operations that create a new element of this data type that a
program will use (that is, create a new object in this class) should be
implemented as constructor methods...

Operations that report information about some element of this data
type (ie, about an object in this class) should not modify it as well...
and should be implemented as accessor methods....

Operations that change — that is, modify some object should
implemented as modifier or “mutator” methods....

...and, yes: With rare exceptions, each public method in a class
should be one of the above three types!.... but only one

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #10 7 / 21

Data Types and ADTs Data Types as Classes

Class Invariants

At this point, information about our class that is available to the rest of
the world includes

the names we have given to the public methods we have provided for
use, as well as

signatures for these methods.

In general this fails to include — or clearly convey — info about the
acceptable ranges of values, and required relationships, for values
represented by private instance variables for our class.

Eg: For our “Counter” example, it is not necessarily clear that...

limit is an integer (whose value will not be changed) that is positive
and and can be represented using Java’s int data type

value is a nonnegative integer that is less than limit.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #10 8 / 21

Data Types and ADTs Data Types as Classes

Class Invariants

Definition: A class invariant is an assertion about the information that is
maintained by each object in the class.

Properties:

The class invariant must be satisfied whenever the use of a
constructor method results in the creation of a new object.

Thus the class invariant should be implied by every constructor’s
postcondition(s).

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #10 9 / 21

Data Types and ADTs Data Types as Classes

Class Invariants

Properties, Continued:

The class invariant may be assumed to hold immediately before the
execution of any other public (accessor or mutator) method begins. It
should therefore be part of every such method’s precondition(s).

The class invariant does not necessarily hold while the execution of a
mutator method is in progress.

However, the class invariant must hold, once again, when every public
method terminates. It should therefore be part of every accessor and
mutator method’s postcondition(s).

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #10 10 / 21

Data Types and ADTs Data Types as Classes

Class Invariants

Class invariant for our “simple counter:”

a) limit is a positive integer that can be represented exactly using
Java’s int data type

b) value is an integer whose value is between 0 and limit− 1, inclusive

A SimpleCounter.java file implementing this class — and including
this class invariant — will be provided for students to examine and use.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #10 11 / 21

Data Types and ADTs New Classes From Old

Composition

It is possible that the objects in a class have an instance (or even multiple
instances of) another class as a component(s)

Example: Consider a TimeOfDay class whose objects can be used to
represent times during a day, using a 24-hour clock, measured in hours,
minutes, and seconds.

Each instance of (ie, object in) the TimeOfDay class has three instances
of our “simple counter” class as components:

seconds: a simple counter with limit equal to 60

minutes: a simple counter with limit equal to 60

hours: a simple counter with limit equal to 24

Note: In this kind of relationship, the “components” do not have any kind
of independent identity, themselves: They are only accessed indirectly,
through the larger class’s operations

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #10 12 / 21

Data Types and ADTs New Classes From Old

Aggregation

This is another kind of “has a” relationship between objects.

The chief difference between aggregation and composition is that, when
“aggregation” is used, the “component” object does have an independent
identity — and can be accessed directly by other classes and methods

Example: This relationship is used to define a linked list of objects of the
same class — each object in the list (except the final one) has a next
object that follows it.

Note: We will use aggregation quite often in this course, because it is
needed to implement recursively defined (and “hierarchical”) data types.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #10 13 / 21

Data Types and ADTs New Classes From Old

Inheritance

Another important relationship between classes is an “is a” relationship:
One class extends another, “inheriting” all the attributes of the original

Example: the Exception Class Hierarchy

Classes Error and Exception both extend the class Throwable
— so that an Error object “is a” Throwable object, too

Classes RunTimeException and IOException both extend the
Exception class — so that a RunTimeException object “is an”
Exception object, too.

Note: It follows from this that a RunTimeException object “is a”
Throwable object, too.

Note: In CPSC 331 we will use libraries of classes that have been
developed using inheritance. You will not need to use inheritance to define
classes when solving problems in this course (except possibly for a few very
limited examples).

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #10 14 / 21

Data Types and ADTs New Classes From Old

Abstract Classes

An abstract class is a special kind of class that includes declarations of one
or more methods without providing implementations of these methods.
These methods are called abstract methods.

Such a class cannot have any objects of “its own.”

However, other regular (concrete) classes can (and generally do) extend an
abstract class, providing implementations of all the abstract methods
whose declarations have been inherited — and these concrete classes can
have objects.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #10 15 / 21

Data Types and ADTs ADTs as Interfaces

Interfaces

In Java, an interface is . . .

an extreme case of an “abstract class:” An interface can define
constants (i.e., “class variables” — declared as both static and
final) and abstract methods, but it cannot include any instance
variables or implemented methods

used to represent an abstract data type

CPSC 331 students will be expected to write their own interfaces, and use
existing interfaces, to solve problems in this course.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #10 16 / 21

Data Types and ADTs ADTs as Interfaces

Interfaces: Additional Notes

Other abstract and concrete classes that “implement” the interface
must provide the operations specified by the interface with exactly the
same syntax

It is customary, and useful, to include comments that specify the
“semantics” of the operations (giving their requirements in more
detail) as part of an implementation.

It is possible for a class to implement more than one interface; this is
Java’s (only) support for multiple inheritance

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #10 17 / 21

Java Collections Framework

Java Collections Framework

The Java Collections Framework provides implementations for a number of
common collections, including lists, maps and sets in the following
hierarchy of interfaces.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #10 18 / 21

Java Collections Framework

Expectations for This Course

You will be able to “build from scratch,” and you will occasionally be
asked to do so on assignments and tests, because

this is a very effective way to learn about the data structures that are
being discussed, and

You will be able to make (limited) use of standard libraries without
necessarily being able to extend them, because

You should get into the habit of using these libraries instead of
“re-inventing the wheel” as soon as possible

You will discover (very quickly) that you simply do not have time to
solve the problems and design the software that you need to if you try
to build everything from scratch

Extending libraries might be discussed briefly, but not in detail.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #10 19 / 21

A Few Odds and Ends

An Array of What?

If you want to, you can...

1 Maintain a sorted array of integers, or

2 Maintain a sorted array of reals, or

3 Maintain a sorted array of strings, or...

Essentially the same algorithm can be used to sort the array in each case,
and essentially the same algorithm can be used to search in the sorted
array, too.

Java therefore provides (and allows us to develop) generic types as well as
generic methods.

We will need to know more about these in use the Java Collections
Framework effectively... and it turns out to be better to use an
ArrayList instead of a array here...

... but that’s enough for today!

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #10 20 / 21

A Few Odds and Ends

Recommended Reading

Head First Java - Chapter 16

by Kathy Sierra and Bert Bates

Available as eBook on SafariBooksOnline via the library

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #10 21 / 21

	Overview
	Data Types and ADTs
	Data Types as Classes
	New Classes From Old
	ADTs as Interfaces

	Java Collections Framework
	A Few Odds and Ends

