
Computer Science 331
Binary Search Trees

Mike Jacobson

Department of Computer Science
University of Calgary

Lectures #14–15

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #14–15 1 / 34

Outline

1 The Dictionary ADT

2 Binary Trees
Definitions
Relationship Between Size and Height

3 Binary Search Trees
Definition
Searching
Finding an Element with Minimal Key
BST Insertion
BST Deletion
Complexity Discussion

4 References

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #14–15 2 / 34

The Dictionary ADT

The Dictionary ADT

A dictionary is a finite set (no duplicates) of elements.

Each element is assumed to include

A key, used for searches.

Keys are required to belong to some ordered set.
The keys of the elements of a dictionary are required to be distinct.

Additional data, used for other processing.

Permits the following operations:

search by key

insert (key/data pair)

delete an element with specified key

Similar to Java’s Map (unordered) and SortedMap (ordered) interfaces.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #14–15 3 / 34

Binary Trees Definitions

Binary Tree

A binary tree T is a hierarchical, recursively defined data structure,
consisting of a set of vertices or nodes.

A binary tree T is either

an “empty tree,”

or

a structure that includes

the root of T (the node at the top)
the left subtree TL of T . . .
the right subtree TR of T . . .

. . . where both TL and TR are also binary trees.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #14–15 4 / 34



Binary Trees Definitions

Example and Implementation Details

Example:
Each node has a:

parent: unique node
above a given node

left child: node in left
subtree directly below a
given node (root of left
subtree)

right child: node in right
subtree directly below a
given node (root of right
subtree)

Each of these may be null

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #14–15 5 / 34

Binary Trees Definitions

Additional Terminology

Additional terms related to binary trees:

siblings: two nodes with the same parent

descendant (of N): any node occurring in the tree with root N

ancestor (of N): root of any tree containing node N

leaf: node with no children

size: number of nodes in the tree

depth (of N): length (# of edges) of path from the root to N

height: length of longest path from root to a leaf
(height(emptytree) = −1)

Note: depth and height are sometimes (as in the text) defined in terms of
number of nodes as opposed to number of edges.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #14–15 6 / 34

Binary Trees Relationship Between Size and Height

Size vs. Height: One Extreme

This binary tree is said to be full:

all leaves have the same depth

all non-leaf nodes have exactly
two children

Size: 7

Height: 2

Relationship:

n = 1 + 2 + 4 =
h∑

i=0

2i

= 2h+1 − 1,

and

h = log2(n + 1)− 1

Upper bound: a binary tree of height h has size at most 2h+1 − 1.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #14–15 7 / 34

Binary Trees Relationship Between Size and Height

Size vs. Height: Another Extreme

Essentially a linked list!

Size: 5

Height: 4

Relationship: n = h + 1

Lower bound: a binary tree with height h has size at least h + 1.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #14–15 8 / 34



Binary Search Trees Definition

Binary Search Tree

A binary search tree T is a data structure that can be used to store and
manipulate a finite ordered set or mapping.

T is a binary tree

Each element of the dictionary is stored at a node of T , so

set size = size of T

In order to support efficient searching, elements are arranged to
satisfy the Binary Search Tree Property . . .

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #14–15 9 / 34

Binary Search Trees Definition

Binary Search Tree Property

Binary Search Tree Property: If T is nonempty, then

The left subtree TL is a binary search tree including all dictionary
elements whose keys are less than the key of the element at the root

The right subtree TR is a binary search tree including all dictionary
elements whose keys are greater than the key of the element at the
root

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #14–15 10 / 34

Binary Search Trees Definition

Example

One binary search tree for a dictionary including elements with keys

{1, 3, 5, 6, 7, 10}

1

3

5

6

10

7

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #14–15 11 / 34

Binary Search Trees Definition

Binary Search Tree Data Structure

public class BST<E extends Comparable<E>,V> {
protected bstNode<E,V> root;
...

protected class bstNode<E,V> {
E key;
V value;
bstNode<E,V> left;
bstNode<E,V> right;
...

}
}

bstNode can also include a reference to its parent

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #14–15 12 / 34



Binary Search Trees Searching

Specification of “Search” Problem:

Precondition 1:

a) T is a BST storing values of some type V along with keys of type E

b) key is an element of type E stored with a value of type V in T

Postcondition 1:

a) Value returned is (a reference to) the value in T with key key

b) T and key are not changed

Precondition 2: same, but key is not in T
Postcondition 2:

a) A notFoundException is thrown

b) T and key are not changed

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #14–15 13 / 34

Binary Search Trees Searching

Searching: An Example

Searching for 5:

1

3

5

6

10

7

Nodes Visited:

Start at 6 : since 5 < 6, search in left subtree

Next node 3 : since 5 > 3, search in right subtree

Next node 5 : equal to key, so we’re finished

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #14–15 14 / 34

Binary Search Trees Searching

A Recursive Search Algorithm

public V search(bstNode<E,V> T, E key)
throws notFoundException {

if (T == null)
throw new notFoundException();

else if (key.compareTo(T.key) == 0)
return T.value;

else if (key.compareTo(T.key) < 0)
return search(T.left, key);

else
return search(T.right, key);

}

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #14–15 15 / 34

Binary Search Trees Searching

Partial Correctness

Proved by induction on the height of T:

1 Base cases are correct (easy: height −1 or 0)
2 Assume that the algorithm is partially correct for all trees of height
≤ h − 1. By the BST property:

if key == root.key, correctness of output is clear by inspection of
the code
otherwise, by the BST property:

if key < root.key, it is in the left subtree (or not in the tree)
otherwise key > key.root and it must be in the right subtree (or not
in the tree)

In either case, algorithm is called recursively on a subtree of height at
most h − 1 and outputs correct result by assumption

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #14–15 16 / 34



Binary Search Trees Searching

Termination and Running Time

Let Steps(T) be the number of steps used to search in a BST T in the
worst case. Then there are positive constants c1, c2 and c3 such that

Steps(T) ≤


c1 if height(T) = −1,

c2 if height(T) = 0,

c3 + max(Steps(T.left), Steps(T.right))

if height(T) > 0.

Exercise: Use this to prove that

Steps(T) ≤ c3 × height(T) + max(c1, c2)

Exercise: Prove that Steps(T) ≥ height(T) as well.

=⇒ The worst-case cost to search in T is in Θ(height(T)).

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #14–15 17 / 34

Binary Search Trees Finding an Element with Minimal Key

Minimum Finding: The Idea

1

3

5

6

10

7

Idea: value in a node is the minimum if the node has no left child

recursively (or iteratively) visit left children

first node with no left child encountered contains the minimum key

Example: minimum is 1

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #14–15 18 / 34

Binary Search Trees Finding an Element with Minimal Key

A Recursive Minimum-Finding Algorithm

// Precondition: T is non-null
// Postcondition: returns node with minimal key,
// null if T is empty

public bstNode<E,V> findMin(bstNode<E,V> T) {
if (T == null)
return null;

else if (T.left == null)
return T;

else
return findMin(T.left);

}

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #14–15 19 / 34

Binary Search Trees Finding an Element with Minimal Key

Analysis: Correctness and Running Time

Partial Correctness (tree of height h):

Exercise (similar to proof for Search)

Termination and Bound on Running Time (tree of height h):

after each recursive call, the height is reduced by at least 1

worst case running time is Θ(h) (and hence Θ(n))

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #14–15 20 / 34



Binary Search Trees BST Insertion

Insertion: An Example

1

3

5

6

10

7

9

Idea: use search to find empty subtree where node should be

Nodes Visited (inserting 9):

Start at 6 : since 9 > 6, new node belongs in right subtree

Next node 10 : since 9 < 10, new node belongs in left subtree

Next node 7 : since 9 > 7, new node belongs in right subtree

Next node null: insert new node at this point

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #14–15 21 / 34

Binary Search Trees BST Insertion

A Recursive Insertion Algorithm

// Non-recursive public function calls recursive worker function
public void insert(E key, V value)

{ root = insert(root, key, Value); }

protected
bstNode<E,V> insert(bstNode<E,V> T, E newKey, V newValue) {

if (T == null)
T = new bstNode<E,V>(newKey,newValue,null,null);

else if (newKey.compareTo(T.key) < 0)
T.left = insert(T.left, newKey, newValue);

else if (newKey.compareTo(T.key) > 0)
T.right = insert(T.right, newKey, newValue);

else
throw new FoundException();

return T;
}

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #14–15 22 / 34

Binary Search Trees BST Insertion

Analysis: Correctness and Running Time

Partial Correctness (tree of height h):

Exercise (similar to proof for Search)

Termination and Bound on Running Time (tree of height h):

worst case running time is Θ(h) (and hence Θ(n))

Proof: exercise

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #14–15 23 / 34

Binary Search Trees BST Deletion

Deletion: Four Important Cases

1

3

5

6

10

7

Key is/has . . .

1 Not Found (Eg: Delete 8)

2 At a Leaf (Eg: Delete 7)

3 One Child (Eg: Delete 10)

4 Two Children (Eg: Delete 6)

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #14–15 24 / 34



Binary Search Trees BST Deletion

First Case: Key Not Found

1

3

5

6

10

7

Idea: search for key 8, throw notFoundException when not found

Nodes Visited (delete 8):

Start at 6 : since 8 > 6, delete 8 from right subtree

Next node 10 : since 8 < 10, delete 8 from left subtree

Next node 7 : since 8 > 7, delete 8 from right subtree

Next node null: conclude that 8 is not in the tree

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #14–15 25 / 34

Binary Search Trees BST Deletion

Algorithm and Analysis

protected bstNode<E,V> delete(bstNode<E,V> T, E key) {
if (T != null) {
if (key.compareTo(T.key) < 0)

T.left = delete(T.left, key);
else if (key.compareTo(T..key) > 0)

T.right = delete(T.right,key);
else if ...

// found node with given key
}
else
throw new notFoundException();

return T;
}

Correctness and Efficiency For This Case:

tree is not modified if key is not found (base case will be reached)

worst-case cost Θ(h) (same as search)

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #14–15 26 / 34

Binary Search Trees BST Deletion

Second Case: Key is at a Leaf

1

3

5

6

10

Idea: set appropriate pointer in parent to null

Nodes Visited (delete 7):

Start at 6 : since 7 > 6, delete 7 from right subtree

Next node 10 : since 7 < 10, delete 7 from left subtree

Next node 7 : set pointer to left child of parent to null

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #14–15 27 / 34

Binary Search Trees BST Deletion

Algorithm and Analysis

Extension of Algorithm:

else if (T.left == null && T.right == null)
T = null;

Correctness and Efficiency For This Case:

test detects whether the node is a leaf

replacing T with null deletes the leaf at T

removing a leaf does not affect BST property

worst-case cost is Θ(h) for this case (Θ(h) to locate leaf, Θ(1) to
remove it)

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #14–15 28 / 34



Binary Search Trees BST Deletion

Third Case: Key is at a Node with One Child

1

3

5

6

7

Idea: remove node, put the one subtree in its place

Nodes Visited (delete 10):

Start at 6 : since 10 > 6, delete 10 from right subtree

Next node 10 : set pointer to right child of parent to child of 10

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #14–15 29 / 34

Binary Search Trees BST Deletion

Algorithm and Analysis

Extension of Algorithm:

else if (T.left == null)
T = T.right;

else if (T.right == null)
T = T.left;

Correctness and Efficiency For This Case:

T is replaced with its one non-empty subtree

node originally at T is deleted
BST property still holds (new subtree at T still contains keys that were
in the old subtree)

worst case cost is Θ(h) (Θ(h) to locate node, Θ(1) to remove it)

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #14–15 30 / 34

Binary Search Trees BST Deletion

Fourth Case: Key is at a Node with Two Children

1

3

5

10

7

Idea: replace node with its successor (minimum in the right subtree)

Nodes Visited (delete 6):

Start at 6 : found node to delete

replace data at node with data from the node of minimum key in the
right subtree

delete node with minimal key from the right subtree

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #14–15 31 / 34

Binary Search Trees BST Deletion

Algorithm and Analysis

Extension of Algorithm:

else {
bstNode<E,V> min = findMin(T.right);
T.key = min.key; T.value = min.value;
T.right = delete(T.right, T.key);

}

Correctness and Efficiency For This Case:

BST property holds: all entries in the new right subtree have keys >
the smallest key from the original right subtree

worst case cost is Θ(h) :

findMin costs Θ(h) (from last lecture)
recursive call deletes a node with at most one child from a tree of
height < h (cost is Θ(h))

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #14–15 32 / 34



Binary Search Trees Complexity Discussion

More on Worst Case

All primitive operations (search, insert, delete) have worst-case
complexity Θ(n)

all nodes have exactly one child (i.e., tree only has one leaf)

Eg. will occur if elements are inserted into the tree in ascending (or
descending) order

On average, the complexity is Θ(log n)

Eg. if the tree is full, the height of the tree is h = log2(n + 1)− 1

the height of a randomly constructed tree (inserting n elements
uniformly randomly) is 3 log2 n for sufficiently large n (see lecture
supplement)

Need techniques to ensure that all trees are close to full

want h ∈ Θ(log n) in the worst case

one possibility: red-black trees (next three lectures)

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #14–15 33 / 34

References

References

Data Structures & Algorithms in Java (Lafore)

Chapter 8 Discusses in more detail, including algorithms for tree
traversals

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #14–15 34 / 34


	The Dictionary ADT
	Binary Trees
	Definitions
	Relationship Between Size and Height

	Binary Search Trees
	Definition
	Searching
	Finding an Element with Minimal Key
	BST Insertion
	BST Deletion
	Complexity Discussion

	References

