
Computer Science 331
Red-Black Trees

Mike Jacobson

Department of Computer Science
University of Calgary

Lectures #16-18

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 1 / 69

Outline

1 Definition

2 Height-Balance

3 Searches

4 Rotations

5 Insertion
Outline and Strategy
Insertions: Main Case
Insertions: Other Cases

6 Deletions
Outline and Strategy
Algorithm for Final Case
Partial Correctness
Termination and Efficiency

7 Reference

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 2 / 69

Definition

Definition of a Red-Black Tree

A red-black tree is a binary tree that can be used to implement the
“Dictionary” ADT (also “SortedSet” and “SortedMap” interfaces from the
JCF)

Internal Nodes are used to store elements of a dictionary.

Leaves are called “NIL nodes” and do not store elements of the set.

Every internal node has two children (either, or both, of which might
be leaves).

The smallest red-black tree has size one (single NIL node).

If the leaves (NIL nodes) of a red-black tree are removed then the
resulting tree is a binary search tree.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 3 / 69

Definition

Red-Black Properties

A binary search tree is a red-black tree if it satisfies the following:

1 Every node is either red or black.

2 The root is black.

3 Every leaf (NIL) is black.

4 If a node is red, then both its children are black.

5 For each node, all paths from the node to descendant leaves contain
the same number of black nodes.

Why these are useful:

height is in Θ(log n) in the worst case (tree with n internal nodes)

worst case complexity of search, insert, delete are in Θ(log n)

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 4 / 69



Definition

Example

1 4

6

15

16

20

10

182 8 12

“Black” internal nodes are drawn as circles

“Red” nodes are drawn as diamonds

NIL nodes (leaves) are drawn as black squares

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 5 / 69

Definition

Implementation Details

Example: Figure 13.1 on page 275 of the Cormen, Leiserson, Rivest, and
Stein book.

The color of a node can be represented by a Boolean value (eg,
true=black, false=red), so that only one bit is needed to store the
color of a node

To save space and simplify programming, a single sentinel can replace
all NIL nodes.

The “parent” of the root node is pointed to the sentinel as well.

An “empty” tree contains one single NIL node (the sentinel)

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 6 / 69

Height-Balance

Black-Height of a Node

The black-height of a node x , denoted bh(x), is the number of black
nodes on any path from, but not including, a node x down to a leaf.

Example: In the previous red-black tree,

The black-height of the node with label 2 is: 1

The black-height of the node with label 4 is: 1

The black-height of the node with label 6 is: 2

The black-height of the node with label 8 is: 1

The black-height of the node with label 10 is: 2

Note: Red-Black Property #5 implies that bh(x) is well-defined for each
node x .

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 7 / 69

Height-Balance

The Main Theorem

Theorem 1

If T is a red-black tree with n nodes then the height of T is at most
2 log2(n + 1).

Outline of proof:

prove a lower bound on tree size in terms of black-height

prove an upper bound on height in terms of black-height of the tree

combine to prove main theorem

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 8 / 69



Height-Balance

Bounding Size Using Black-Height

Lemma 2

For each node x, the subtree with root x includes at least 2bh(x)− 1 nodes.

Method of Proof: mathematical induction on height of the subtree with
root x (using the strong form of mathematical induction)

Base case: prove that the claim holds for subtrees of height 0

Inductive step: prove, for all h ≥ 0, that if the lemma is true for all
subtrees with height at most h − 1 then it also holds for all subtrees
with height h.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 9 / 69

Height-Balance

Base Case (h = 0)

Suppose that the height h = 0 :

x is a leaf (just the NIL node sentinel)

black-height bh(x) = 0

number of nodes n = 1

Thus, it follows that n satisfies

n ≥ 2bh(x) − 1 = 20 − 1 = 0

as required.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 10 / 69

Height-Balance

Notation for Inductive Step

b Black-height of x
bL Black-height of left child of x
bR Black-height of right child of x

Tx Subtree with root x

h Height of Tx

hL Height of left subtree of Tx

hR Height of right subtree of Tx

n Size of Tx

nL Size of left subtree of Tx

nR Size of right subtree of Tx

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 11 / 69

Height-Balance

Useful Properties Involving Size and Height

n = nL + nR + 1. The n nodes of Tx are:

the nL nodes of the left subtree of Tx

the nR nodes of the right subtree of Tx

one more node — the root x of Tx

h = 1 + max(hL, hR), so hL ≤ h − 1 and hR ≤ h − 1

height of any tree (including Tx) is the maximum length of any path
from the root to any leaf

it follows by this definition that h = 1 + max(hL, hR)

the remaining inequalities are now easily established

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 12 / 69



Height-Balance

Useful Property Involving Black-Height

bL ≥ b − 1 and bR ≥ b − 1.

Case 1: x has color red

both children of x have color black (Red-Black Property #4)

Red-Black Property #5 implies that bL = bR = b − 1.

Case 2: x has color black.

children of x could each be either red or black

bL ≥ b − 1, because by the definition of “black-height”

bL =

{
b if the left child of x is red

b − 1 if the left child of x is black.

an analogous argument shows that bR ≥ b − 1

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 13 / 69

Height-Balance

Inductive Step

Let h be an integer such that h ≥ 0.

Inductive Hypothesis: Suppose the claimed result holds for every node y
such that the height of the tree with root y is less than h.

Let x be a node such that the height of the tree Tx is h.

Let n be the number of nodes of Tx .

Required to Show: n ≥ 2bh(x) − 1 holds for Tx , assuming the inductive
hypothesis.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 14 / 69

Height-Balance

Proof of Inductive Step

The inductive hypothesis implies that

nL ≥ 2bL − 1 and nR ≥ 2bR − 1 .

because hL and hR are both ≤ h − 1.

Thus, the number of internal nodes n satisfies

n = nL + nR + 1 ≥ (2bL − 1) + (2bR − 1) + 1

≥ (2b−1 − 1) + (2b−1 − 1) + 1

= 2(2b−1)− 1

= 2b − 1

as required.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 15 / 69

Height-Balance

Bounding Height Using Black-Height

Lemma 3

If T is a red-black tree then bh(r) ≥ h/2 where r is the root of T and h is
the height of T .

Proof.

Assume that T has height h :

by red-black Property 4, at least half the nodes on any simple path
from the root to a leaf (not including the root) are black,

height of T is the length of the longest path from root to a leaf.

Hence, bh(r) ≥ h/2.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 16 / 69



Height-Balance

Proof of the Main Theorem

Theorem 4

If T is a red-black tree with n nodes then the height of T is at most
2 log2(n + 1).

Proof.

Let r be the root of T . The two Lemmas state that:

n ≥ 2bh(r) − 1 and bh(r) ≥ h/2

Putting these together yields:

n ≥ 2h/2 − 1 ⇒ log2(n + 1) ≥ h/2 ⇒ h ≤ 2 log2(n + 1)

as required.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 17 / 69

Searches

Searching in a Red-Black Tree

Searching in a red-black tree is almost the same as searching in a binary
search tree.

Difference Between These Operations:

leaves are NIL nodes that do not store values

thus, unsuccessful searches end when a leaf is reached instead of
when a null reference is encountered

Worst-Case Time to Search in a Red-Black Tree:

Θ(log n)

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 18 / 69

Rotations

Insertion and Deletion?

Unfortunately, insertions and deletions are more complicated because we
need to preserve the “Red-Black Properties.”

Main idea: use rotations to

change subtree heights

preserve binary search tree property

Combination of rotations and other methods can be used to re-establish
red-black tree properties after insertions and deletions

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 19 / 69

Rotations

What is a Rotation?

Rotation:

a local operation on a binary search tree

preserves the binary search tree property

used to implement operations on red-black trees
(and other height-balanced trees)

two types:

Left Rotations
Right Rotations

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 20 / 69



Rotations

Left Rotation: Tree Before Rotation

Tree Before Performing Left Rotation at β:

β

δ
T1

T2 T3

Assumption: β has a right child, δ

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 21 / 69

Rotations

Useful Consequences of Binary Search Tree Property

Lemma 5

For all α ∈ T1, γ ∈ T2, and ζ ∈ T3,

α < β < γ < δ < ζ

Proof.

T is a BST, so:

T1: is the left subtree of β (so α < β)

T2: is contained in the right subtree of β (so β < γ)
is the left subtree of δ (so γ < δ)

T3: is the right subtree of δ (so δ < ζ)

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 22 / 69

Rotations

Left Rotation: Tree After Rotation

T3

T2T1

δ

β

Notice that this is still a BST (inequalities on previous slide still hold)

Pseudocode: Introduction to Algorithms, page 278

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 23 / 69

Rotations

Right Rotation: Tree Before Rotation

Tree Before Performing Right Rotation at δ:

T3

T2T1

δ

β

Assumption: δ has a left child, β

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 24 / 69



Rotations

Right Rotation: Tree After Rotation

β

δ
T1

T2 T3

Note: This is both the mirror-image, and the reversal, of a left-rotation.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 25 / 69

Rotations

Effects of a Rotation

Exercises:

1 Confirm that a tree is a BST after a rotation if it was one before.

2 Confirm that a (single left or right) rotation can be performed using

Θ(1) operations

including comparisons and assignments of pointers or references

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 26 / 69

Insertion Outline and Strategy

Beginning an Insertion

Suppose we wish to insert an object x into a red black tree T .

if T includes an object with the same key as x then

throw FoundException (and terminate)

else

Insert a new node storing the object x in the usual way.
Both of the children of this node should be (black) leaves.

Color the new node red.

Let z be a pointer to this new node.

Proceed as described next...

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 27 / 69

Insertion Outline and Strategy

How To Continue

Strategy for Finishing the Operation:

At this point, T is not necessarily a red-black tree, but there is only a
problem at one problem area in the tree.

newly-inserted node (color red) may violate red-black tree properties
#2 or #4

Rotations and recoloring of nodes will be used to move the “problem
area” closer to the root.

Once the “problem area” has been moved to the root, at most one
correction turns T back into a red-black tree.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 28 / 69



Insertion Outline and Strategy

Structure of Rest of Insertion Algorithm

Recall our assumption from the last lecture: parent of root is a dummy
node with color black

Note:

During the execution of this algorithm, z always points to a red node;
this is the only place where there might be a problem

z initially points to the newly-inserted node (color red)

while the parent of z is red do
Make an adjustment (to be described shortly)

end while
if z is the root then

Change the color of z to black
end if

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 29 / 69

Insertion Outline and Strategy

Loop Invariant

z is red and exactly one of the following is true:

(A) The parent of z is also red.
All other red-black properties are satisfied.

(B) z is the root.
All other red-black properties are satisfied.

(C) All red-black properties are satisfied.
Thus T is a red-black tree.

Note: Loop invariant + failure of loop test ⇒ B or C.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 30 / 69

Insertion Outline and Strategy

Loop Variant

Loop Variant: depth of z

Consequence:

number of executions of loop body is linear in the height of T .

Note:

We will need to check that this is a loop variant!

This is the case if z is moved closer to the root after every iteration.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 31 / 69

Insertion Insertions: Main Case

Subcases of Case A

Note: Since the parent of z is red it is not the root; the grandparent of z
must be black.

1 Parent of z is a left child; sibling y of parent of z is red.

(a) z is a left child.
(b) z is a right child.

2 Parent of z is a left child; sibling y of parent of z is black.
z is a right child.

3 Parent of z is a left child; sibling y of parent of z is black.
z is a left child.

Subcases 4–6: Mirror images of subcases 1–3:

Exchange “left” and “right;” parent(z) is now a right child

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 32 / 69



Insertion Insertions: Main Case

Subcase 1a: Tree Before Adjustment

z is left child, parent of z is a left child; sibling y of parent of z is red

γ

δ

T4 T5

β

α

T

T

z

T1 2

3

Adjustment:

Recolor β, γ, δ; point z to its grandparent.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 33 / 69

Insertion Insertions: Main Case

Subcase 1a: Tree After Adjustment

T4 T5

α

T

T

T1 2

3

γ

β δ

z

Node z may still cause violations of red-black tree properties #2 or #4,
but z has moved closer to the root.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 34 / 69

Insertion Insertions: Main Case

Subcase 1b: Tree Before Adjustment

z is right child; parent of z is a left child; sibling y of parent of z is red;

γ

T1

α

β

T2 T3

δ

T4 T5

z

Adjustment:

Recolor α, γ, δ; point z to its grandparent.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 35 / 69

Insertion Insertions: Main Case

Subcase 1b: Tree After Adjustment

T4 T5T1

T2 T3

β

γ

α δ

z

Node z may still cause violations of red-black tree properties #2 or #4,
but z has moved closer to the root.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 36 / 69



Insertion Insertions: Main Case

Case 2: Tree Before Adjustment

z is right child; parent of z is left child; sibling y of parent of z is black;

T1

α

β

T2 T3

T4 T5

z

δ

γ

Adjustment:

Point z to its parent. Rotate left at α

Rotate right at γ, recolor β and γ.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 37 / 69

Insertion Insertions: Main Case

Case 2: Tree After Adjustment

δ

α

T T1 2 T

TT

3

4 5

β

γ
z

Parent of z is now black, so the while loop terminates and we are finished.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 38 / 69

Insertion Insertions: Main Case

Case 3: Tree Before Adjustment

z is left child; parent of z is left child; sibling y of parent of z is black;

T4 T5

β

α

T

T

z

T1 2

3

δ

γ

Adjustment:

Rotate right at γ; recolor β and γ

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 39 / 69

Insertion Insertions: Main Case

Case 3: Tree After Adjustment

δ

α

T T1 2 T

TT

3

4 5

β

γ
z

Parent of z is now black, so the while loop terminates and we are finished.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 40 / 69



Insertion Insertions: Main Case

Exercises

3 Describe cases 4–6 and draw the corresponding trees.

4 Confirm that the “loop invariant” holds after each adjustment.

5 Confirm that the distance of z from the root decreases after each
adjustment — so the claimed “loop variant” satisfies the properties it
should.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 41 / 69

Insertion Insertions: Other Cases

Handling Cases B and C

Case B: z is the root (so, the root is red)

All other red-black properties are satisfied.

Adjustment: change the color of the root to black.

Case C: T is a red-black tree.

Adjustment: We’re finished!

Pseudocode for adjustments: Introduction to Algorithms, page 281

Exercises:

6 Show that the “insertion” algorithm as a whole is correct.

7 Confirm that the total number of steps used by the insertion
algorithm is at most linear in the depth of the given tree.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 42 / 69

Deletions Outline and Strategy

Beginning of a Deletion

Suppose we wish to delete an object with key k from a red black tree T .

if T does not include an object with key k then

T is not modified; throw KeyNotFoundExcepction and terminate

else

Ignore the NIL nodes (for now)

Consider what would happen if the “standard” algorithm was applied

Let y point the the node that would be deleted

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 43 / 69

Deletions Outline and Strategy

Clarification: What is y?

Specifically . . .

If at least one child of the object storing k is a leaf (that is, a NIL
node) then y is the node storing k

Otherwise y is the node storing the smallest key in the right subtree
with the node storing k as root

Please review the description of deletion of a node from a regular binary
search tree if this is not clear!

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 44 / 69



Deletions Outline and Strategy

Case 1: Deleted Node y was Red

Situation:

At least one child of y is a NIL node (because of the
choice of y)

y and a NIL child can be discarded, with the other child of y
promoted to replace y in T

Then T is still a red black tree. =⇒ We are finished!

Exercise: Confirm that T really is still a red-black tree after a red node
has been removed (in the usual way).

The rest of the lecture concerns the case that the deleted node y was
black.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 45 / 69

Deletions Outline and Strategy

Case 2: Deleted Node was Black

Suppose we deleted (as described above) a black node y

Let x be the node that will be “promoted” to replace y . We have the
following possibilities:

Both children of y are NIL nodes
=⇒ x is a single NIL node that replaces both of these.

One child of y is a NIL node
=⇒ x is the other child (ie, the child of y that is not NIL)

Neither child of y is a NIL node
=⇒ This case is impossible (because of the choice of y)

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 46 / 69

Deletions Outline and Strategy

Possible Problems

1 Paths from nodes to leaves that included y are now missing one black
node =⇒ black-height is not well-defined!

2 It is possible that either

x and its parent might both be red, or
x might be red and be the root

(Note that both cannot be true at the same time.)

There can be no other problems with the tree (yet!)

The rest of the notes are about how to correct these problems.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 47 / 69

Deletions Outline and Strategy

Example

1 4

6

15

16

20

10

182 8 12

Possible cases for x :

delete 1 : x = NIL (no problems!)

delete 8 : x = NIL (black height problem)

delete 18 : x = 20 (black height problem)

delete 6 : x = NIL (black height problem)

delete 10 : x = 15 (black height problem)

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 48 / 69



Deletions Outline and Strategy

Initialization: Fixing “Black-Height”

Fixing Black-Height: Add two more kinds of nodes, to define
black-height once again

Red-Black Node
Count as one black node on a path when
computing black-height.

Double-Black Node
Count as two black nodes on a path when
computing black-height.

In practice, can use a flag called, for example, “fixupRequired” to denote
the “extra” black colour.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 49 / 69

Deletions Outline and Strategy

Initialization: Fixing “Black-Height” (cont.)

Set the new type of x to be

Red-Black (if x was a red child of the deleted black node)

Double-Black (if x was a black child of a deleted black node)

Note: “Black-height” of nodes are well-defined again after this change!

Possible Cases, At This Point:

1 x is a red-black node.

2 x is a double-black node at the root.

3 x is a double-black node, not at the root.

In each case, there are no other problems in the tree.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 50 / 69

Deletions Outline and Strategy

Two of These Cases are Easy!

Case 1: x is a red-black node.

Change x to a black node, and stop

Exercise: confirm that T is a red-black tree after this change.

Case 2: x is a double-black node at the root.

Change x to a black node, and stop

Exercise: confirm that T is a red-black tree after this change.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 51 / 69

Deletions Outline and Strategy

Pseudocode to Finish Deletion of a Black Node

Pseudocode to finish deletion if a black node was deleted and x points to
child being promoted:

Change the type of x as described above.

while x is double-black and not at the root do
Make an adjustment as described next

end while

if x is red-black or at the root then
Change x to a black node

end if

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 52 / 69



Deletions Algorithm for Final Case

Expanding the Remaining Case

One Major Subcase: x is the left child of its parent (β red or black)

T1 T2

β

αx

TR

Another Major Subcase: x is the right child of its parent.

The first of these subcases will be described in detail. The algorithm for
the second is almost identical.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 53 / 69

Deletions Algorithm for Final Case

Expanding the First Subcase

Note: Black-height of β is at least two (Property #5)

T1 T2

αx

β

TTTT3 4 5 6

γ

δ

ζ

Various possibilities (depends on color of sibling of x)

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 54 / 69

Deletions Algorithm for Final Case

Further Breakdown of Subcases

Case β γ δ ζ

3a black black black black
3b red black black black
3c black black red black
3d ? red black black
3e ? ? black red

Exercise: Check that these cases are pairwise exclusive and that no other
cases are possible.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 55 / 69

Deletions Algorithm for Final Case

Case 3a: Before Adjustment

Case 3a: β, γ, δ, ζ all black. Goal: move x closer to root.

T1 T2

αx

β

TTTT3 4 5 6

δ

γ ζ

Adjustment:

Change colors of α, β, and δ; x points to its parent

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 56 / 69



Deletions Algorithm for Final Case

Case 3a: After Adjustment

T1 T2

β

TTTT3 4 5 6

x

α

γ

δ

ζ

After the adjustment:

All cases are now possible; x is closer to the root.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 57 / 69

Deletions Algorithm for Final Case

Case 3b: Before Adjustment

Case 3b: β red; γ, δ, ζ black. Goal: finish after this case.

T1 T2

αx

β

TTTT3 4 5 6

γ

δ

ζ

Adjustment:

Change colors of α, β, and δ; x points to parent.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 58 / 69

Deletions Algorithm for Final Case

Case 3b: After Adjustment

T1 T2

β

TTTT3 4 5 6

x

α

γ

δ

ζ

After the adjustment:

None of the cases apply (loop terminates, x changed to black)

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 59 / 69

Deletions Algorithm for Final Case

Case 3c: Before Adjustment

Case 3c: δ red; β, γ, ζ black. Goal: transform parent of x to red.

T1 T2

αx

β

TTTT3 4 5 6

γ

δ

ζ

Adjustment:

left rotation at β

change colors of β and δ

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 60 / 69



Deletions Algorithm for Final Case

Case 3c: After Adjustment

T1 T2

αx

TT3 4

TT5 6

β

γ

δ

ζ

After the adjustment:

x has not moved, but cases 3b, 3d, or 3e may now apply.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 61 / 69

Deletions Algorithm for Final Case

Case 3d: Before Adjustment

Case 3d: γ red; δ and ζ black. Goal: transform to Case 3e.

T1 T2

αx

β

TTTT3 4 5 6

color c

γ

δ

ζ

Adjustment:

right rotation at δ

change colors of γ and δ

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 62 / 69

Deletions Algorithm for Final Case

Case 3d: After Adjustment

T1 T2

αx

T3

T4

β color c

TT5 6

γ

δ

ζ

After the adjustment:

x has not moved, but case 3e now applies.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 63 / 69

Deletions Algorithm for Final Case

Case 3e: Before Adjustment

Case 3e: δ is black; ζ is red. Goal: finish after this case.

T1 T2

αx

β

TTTT3 4 5 6

color c

color c’γ

δ

ζ

Adjustment:

left rotation at β

recolor α and ζ

switch colors of β and δ; x will point to the root of the tree.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 64 / 69



Deletions Algorithm for Final Case

Case 3e: After Adjustment

T1 T2

x points to root

α

TT3 4

TT5 6

color c’

color c

β

γ

δ

ζ

After the adjustment:

Result is a red-black tree!

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 65 / 69

Deletions Algorithm for Final Case

Other Major Subcase: x is a Right Child

3f: Mirror Image of 3a
3g: Mirror Image of 3b
3h: Mirror Image of 3c
3i: Mirror Image of 3d
3j: Mirror Image of 3d

In each case, the “mirror image” is produced by exchanging the left and
right children of β and of δ

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 66 / 69

Deletions Partial Correctness

Loop Invariant (Elimination of Double-Black Node)

Exactly one of the following cases applies:

T is a red-black tree,

x is a red-black node (no other problems),

x is a double-black node at the root (no other problems),

Exactly one of cases 3a–3j applies (no other problems).

Exercise: verify that this is in fact a loop invariant

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 67 / 69

Deletions Termination and Efficiency

Loop Variant (Elimination of Double Black Node)

Consider the function that is defined as follows.

Case Function Value

Red-Black Tree 0
x is red-black 0
x is at root 0
Case 3a or 3f depth(x) + 4
Case 3b or 3g 1
Case 3c or 3h 3
Case 3d or 3i 2
Case 3e or 3j 1

Exercise: Show that this is a loop variant

total cost linear in height of the tree

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 68 / 69



Reference

Reference

Main reference:

Introduction to Algorithms, Chapter 13

Note: In the above reference, cases are named and grouped differently to
provide more compact pseudocode — but the result may be (even more)
confusing.

Additional Reference:

Data Structures & Algorithms in Java, Chapter 9

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #16-18 69 / 69


	Definition
	Height-Balance
	Searches
	Rotations
	Insertion
	Outline and Strategy
	Insertions: Main Case
	Insertions: Other Cases

	Deletions
	Outline and Strategy
	Algorithm for Final Case
	Partial Correctness
	Termination and Efficiency

	Reference

