
Computer Science 331
Algorithms for Searching

Mike Jacobson

Department of Computer Science
University of Calgary

Lecture #21

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 1 / 20

Outline

1 Searching in an Unsorted Array
The Searching Problem
Linear Search

2 Searching in a Sorted Array
The Searching Problem
Linear Search
Binary Search

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 2 / 20

Searching in an Unsorted Array The Searching Problem

The “Searching” Problem

Precondition 1:

a) A is an array with length A.length = n ≥ 1 storing values of some
type T

b) key is a value of type T that is stored in A

Postcondition 1:

a) The value returned is an integer i such that A[i] = key

b) A and key are not changed

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 3 / 20

Searching in an Unsorted Array The Searching Problem

The “Searching” Problem, continued

Precondition 2:

a) A is an array with length A.length = n ≥ 1 storing values of some
type T

b) key is a value of type T that is not stored in A

Postcondition 2:

a) A notFoundException is thrown

b) A and key are not changed

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 4 / 20

Searching in an Unsorted Array Linear Search

Linear Search

Idea: Compare A[0], A[1], A[2], . . . to key until either

key is found, or

we run out of entries to check

int LinearSearch(T key)

i = 0
while (i < n) and (A[i] 6= key) do

i = i + 1
end while

if i < n then
return i

else
throw KeyNotFoundException

end if

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 5 / 20

Searching in an Unsorted Array Linear Search

Correctness and Efficiency

Correctness: covered in Tutorial 2

Efficiency:

worst-case number of iterations is n

loop body runs in constant time

so worst-case runtime of LinearSearch is in Θ(n)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 6 / 20

Searching in a Sorted Array The Searching Problem

The “Searching” Problem in a Sorted Array

Precondition 1:

a) A is an array with length A.length = n ≥ 1 storing values of some
ordered type T

b) A[i] < A[i + 1] for every integer i such that 0 ≤ i < n − 1

c) key is a value of type T that is stored in A

Postcondition 1:

a) The value returned is an integer i such that A[i] = key

b) A and key are not changed

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 7 / 20

Searching in a Sorted Array The Searching Problem

The “Searching” Problem in a Sorted Array

Precondition 2:

a) A is an array with length A.length = n ≥ 1 storing values of some
ordered type T

b) A[i] < A[i + 1] for every integer i such that 0 ≤ i < n − 1

c) key is a value of type T that is not stored in A

Postcondition 2:

a) A notFoundException is thrown

b) A and key are not changed

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 8 / 20

Searching in a Sorted Array Linear Search

Linear Search

Idea: compare A[0], A[1], A[2], . . . to k until either k is found or

we see a value larger than k — all future values will be larger than k
as well! — or

we run out of entries to check

int LinearSearch(T key)

i = 0
while (i < n) and (A[i] < k) do

i = i + 1
end while

if (i < n) and (A[i] = k) then
return i

else
throw KeyNotFoundException

end if

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 9 / 20

Searching in a Sorted Array Linear Search

Correctness and Efficiency

Correctness: similar to unsorted case. Loop Invariant:

i is an integer such that 0 ≤ i < n

A[h] < key for 0 ≤ h ≤ i

A and key have not been changed

Efficiency: also Θ(n) in the worst case

Note: although the worst-case involves examining all elements of the
array, fewer will be examined on average

improves on unsorted case (all array elements must be examined to
determine that k is not in the array)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 10 / 20

Searching in a Sorted Array Binary Search

Binary Search

Idea: suppose we compare key to A[i]

if key > A[i] then key > A[h] for all h ≤ i .

if key < A[i] then key < A[h] for all h ≥ i .

Thus, comparing key to the middle of the array tells us a lot:

can eliminate half of the array after the comparison

int binarySearch(T key)

return bsearch(0, n − 1, key)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 11 / 20

Searching in a Sorted Array Binary Search

Specification of Requirements for Subroutine

Calling Sequence: int bsearch(int low , int high, int key)

Preconditions 1 and 2: add the following to the corresponding
precondition in the “Searching in a Sorted Array” problem:

d) low and high are integers such that

0 ≤ low ≤ n
−1 ≤ high ≤ n − 1
low ≤ high + 1
A[h] < key for 0 ≤ h < low
A[h] > key for high < h ≤ n − 1

The corresponding postcondition can be used without change.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 12 / 20

Searching in a Sorted Array Binary Search

Pseudocode: The Binary Search Subroutine

int bsearch(int low , int high, T key)

if low > high then
throw KeyNotFoundException

else
mid = b(low + high)/2c
if (A[mid] > key) then

return bsearch(low , mid − 1, key)
else if (A[mid] < key) then

return bsearch(mid + 1, high, key)
else

return mid
end if

end if

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 13 / 20

Searching in a Sorted Array Binary Search

Example

0 1 2 3 4 5 6 7 8 9 10
A: -3 2 6 18 21 23 29 30 35 43 49

Search for 18 in the array A :

bsearch(0,10,18): mid = (0 + 10)/2 = 5, A[5] = 23 > 18

bsearch(0,4,18): mid = (0 + 4)/2 = 2, A[2] = 6 < 18

bsearch(3,4,18): mid = (3 + 4)/2 = 3, A[3] = 18

Return 3

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 14 / 20

Searching in a Sorted Array Binary Search

Partial Correctness

Induction on the length n = high − low + 1 of the subarray
A[low], . . . ,A[high]

Inductive Hypothesis: Calls to bsearch within the code (subarray length
< n) behave as expected

Base Case: low > high (n = 0)

no elements — throw KeyNotFoundException (correct)

Inductive Step: low ≤ high (n > 0)

return mid if A[mid] = key (correct)

recursive call (correct by assumption). Should verify that:

preconditions of bsearch are satisfied for the recursive call
size of subarray in recursive call is < n

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 15 / 20

Searching in a Sorted Array Binary Search

Efficiency and Termination

To search in array of size n:

1 if n is odd: recursively search subarrays of size n−1
2

2 if n is even: recursively search subarrays of sizes n
2 − 1 and n

2

Summary: largest subarray is of size bn2c

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 16 / 20

Searching in a Sorted Array Binary Search

Efficiency and Termination, Cont.

T (n): number of steps to search in array of size n

T (n) ≤

{
c1 if n = 0

c2 + T (bn2c) if n ≥ 1

for some constants c2 > c1 > 0.

Expand the recurrence relation:

T (n) ≤ c2 +
(
c2 + T (b n

22
c)
)

= 2c2 + T (b n

22
c)

≤ · · ·

≤ kc2 + T (b n

2k
c)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 17 / 20

Searching in a Sorted Array Binary Search

Efficiency and Termination, Cont.

T (n): number of steps to search in array of size n

Recursion until b n
2k c = 0 =⇒ k = blog2 n + 1c

Therefore, T (n) ≤ c2blog2 n + 1c+ c1

Can be shown that T (n) ≥ c log2 n

searching for an element greater (smaller) than the largest (smallest)
element in the array

Conclusion: T (n) ∈ Θ(log2 n)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 18 / 20

Searching in a Sorted Array Binary Search

A Note on the Analysis

When analyzing algorithms, sometimes we encounter the operators bc and
de

In general, these operators do not change the asymptotic running
time of algorithms

We usually ignore them, e.g., as if n was a complete power of 2 (will
be more formally justified in CPSC 413)

Binary Search Algorithm:

T (n) ≤ kc2 + T (n
2k)

Therefore, k = log2 n + 1 =⇒ T (n) ≤ c2(log2 n + 1) + c1

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 19 / 20

Searching in a Sorted Array Binary Search

References

Java.utils.Arrays package contains several implementations of binary
search

arrays with Object or generic entries, or entries of any basic type

slightly different pre and postconditions than presented here

Further Reading and Java Code:

Data Structures & Algorithms in Java, Chapter 6

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 20 / 20

	Searching in an Unsorted Array
	The Searching Problem
	Linear Search

	Searching in a Sorted Array
	The Searching Problem
	Linear Search
	Binary Search

