

Selection Sort Description

Selection Sort

Idea:

- Repeatedly find "*i*th-smallest" element and exchange it with the element in location *A*[*i*]
- Result: After *i*th exchange,

$$A[0], A[1], \ldots, A[i-1]$$

are the i smallest elements in the entire array, in sorted order — and array elements have been reordered but are otherwise unchanged

Pseudocode

```
void Selection Sort(int[] A)
for i from 0 to n - 2 do
  min = i
  for j from i + 1 to n - 1 do
    if A[j] < A[min] then
      min = j
    end if
  end for
    {Swap A[i] and A[min]}
    tmp = A[i]
    A[i] = A[min]
    A[min] = tmp
end for
```


Selection Sort Analysis

Inner Loop: Semantics

The inner loop is a **for** loop, which does the same thing as the following code (which includes a **while** loop):

$$j = i + 1$$

while $j < n$ do
if $(A[j] < A[min])$ then
 $min = j$
end if
 $j = j + 1$
end while

We will supply a "loop invariant" and "loop variant" for the above **while** loop in order to analyze the behaviour of the corresponding **for** loop

Inner Loop: Loop Invariant

Loop Invariant: At the beginning of each execution of the inner loop body

- $i, min \in \mathbb{N}$
- First subarray (with size *i*) is sorted with smallest elements:
 - 0 ≤ i ≤ n − 2
 - $A[h] \le A[h+1]$ for $0 \le h \le i-2$
 - if i > 0 then $A[i-1] \le A[h]$ for $i \le h \le n-1$
- Searching for the next-smallest element:
 - $i+1 \leq j < n$
 - $i \leq min < j$
 - $A[min] \le A[h]$ for $i \le h < j$
- Entries of A have been reordered; otherwise unchanged

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22-23 9 / 32	Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22-23 10 / 32				
Selection Sort Analysis Inner Loop: Interpretation of the Loop Invariant	Selection Sort Analysis Application of the Loop Invariant				
$A: \underbrace{i-1}_{\text{sorted}} \underbrace{i-1}_{j-1} \underbrace{j-1}_{j-1}$ $A: \underbrace{i-1}_{\text{sorted}} \underbrace{j-1}_{A[min] \text{ smallest}}$ Interpretation: $A[0] \leq A[1] \leq \dots \leq A[i-1]$ $A[0] \leq A[1] \leq \dots \leq A[i-1]$ $A[i] = \text{If } i > 0 \text{ then } A[i-1] \leq A[\ell] \text{ for every integer } \ell \text{ such that } i \leq \ell \leq n$ $A[i] \leq \min \leq j-1 \text{ and } A[min] \leq A[h] \text{ for every integer } h \text{ such that } i \leq \ell \leq n$	Loop invariant, final execution of the loop body, and <i>failure of the loop test</i> ensures that: • $j = n$ immediately after the final execution of the inner loop body • $i \le min < n$ and $A[min] \le A[\ell]$ for all ℓ such that $i \le \ell < n$ • $A[min] \ge A[h]$ for all h such that $0 \le h < i$ In other words, $A[min]$ is the value that should be moved into position $A[i]$				
 i ≤ h ≤ j − 1 entries of A have been reordered, otherwise unchanged 					

Inner Loop: Loop Variant and Application

Loop Variant: f(n, i, j) = n - j

- decreasing integer function
- when f(n, i, j) = 0 we have j = n and the loop terminates

Application:

• initial value is j = i + 1

Mike Jacobson (University of Calgary)

- worst-case number of iterations is
- f(n, i, i + 1) = n (i + 1) = n 1 i

Outer Loop: Semantics

The outer loop is a **for** loop whose index variable *i* has values from 0 to n - 2, inclusive

This does the same thing as a sequence of statements including

- an initialization statement, i = 0
- a while loop with test "i ≤ n − 2" whose body consists of the body of the for loop, together with a final statement i = i + 1

We will provide a loop invariant and a loop variant for this **while** loop in order to analyze the given **for** loop

Computer Science 331

Selection Sort Analysis

Outer Loop: Loop Invariant and Loop Variant

Loop Invariant: At the beginning of each execution of the outer loop body

Computer Science 331

Selection Sort Analysis

- *i* is an integer such that $0 \le i < n-1$
- $A[h] \le A[h+1]$ for $0 \le h < i$
- if i > 0, $A[i 1] \le A[\ell]$ for $i \le \ell < n$
- Entries of A have been reordered; otherwise unchanged

Thus: $A[0], \ldots, A[i-1]$ are sorted and are the *i* smallest elements in A

Loop Variant: f(n, i) = n - 1 - i

- decreasing integer function
- when f(n, i) = 0 we have i = n 1 and the loop terminates
- worst-case number of iterations is f(n, 0) = n 1

Analysis of Selection Sort

Worst-case:

Mike Jacobson (University of Calgary)

- inner loop iterates n 1 i times (constant steps per iteration)
- outer loop iterates n-1 times
- total number of steps is at most

$$c_0 + \sum_{i=0}^{n-2} c_1(n-1-i) = c_0 + c_1 \frac{n(n-1)}{2}$$

Conclusion: Worst-case running time is in $\Theta(n^2)$

Lecture #22-23

13 / 32

Lecture #22-23

Selection Sort Analysis

Analysis of Selection Sort, Concluded

Best-Case:

- Both loops are for loops and a *positive* number of steps is used on each execution of the inner loop body
- Total number of steps is therefore at least

$$\widehat{c_0} + \sum_{i=0}^{n-2} \widehat{c_1}(n-1-i) \in \Omega(n^2)$$

Conclusion: Every application of this algorithm to sort an array of length *n* uses $\Theta(n^2)$ steps

Insertion Sort

Idea:

• Sort progressively larger subarrays

•
$$n-1$$
 stages, for $i = 1, 2, ..., n-1$

- At the end of the *i*th stage
 - Entries originally in locations

$$A[0], A[1], \ldots, A[i]$$

have been reordered and are now sorted

• Entries in locations

$$A[i+1], A[i+2], \ldots, A[n-1]$$

have not yet been examined or moved

Insertion Sort Description Pseudocode Example void Insertion Sort(int [] A) A: 2 6 3 1 4 Idea: insert A[i] in the correct position in A[0],,A	Lecture #22-23 18 / 32
void Insertion Sort(int [] A) Idea: insert $A[i]$ in the correct position in $A[0], \ldots, A$	
for <i>i</i> from 1 to $n-1$ do j = i while $((j > 0)$ and $(A[j] < A[j-1]))$ do $\{Swap A[j-1] and A[j]\}$ tmp = A[j] A[j] = A[j-1] A[j-1] = tmp • initially, $i = 0$ and $A[0] = 2$ is sorted • no swaps • $A[0], A[1]$ sorted A: 2 6 3 1 4	$\mathcal{A}[i-1]$
j = j - 1 end while end for i = 2 • swap $A[2] \& A[1]$ • $A[0], A[1], A[2]$ sorted A: 2 3 6 1 4	

Inner Loop: Loop Invariant

<u>i = 3</u>

- swap A[3] & A[2], swap A[2] & A[1], swap A[1] & A[0]
- *A*[0], *A*[1], *A*[2], *A*[3] sorted
- A: 1 2 3 6 4

<u>*i*</u> = 4

• swap A[4] & A[3]

• *A*[0], *A*[1], *A*[2], *A*[3], *A*[4] sorted

A: 1 2 3 4 6

Finished! $A[0], \ldots, A[4]$ sorted

Loop Invariant: at the beginning of each execution of the inner loop body

- *i*, *j* ∈ ℕ
- $1 \le i < n$ and $0 < j \le i$
- $A[h] \le A[h+1]$ for $0 \le h < j-1$ and $j \le h < i$
- if j > 0 and j < i then $A[j-1] \le A[j+1]$
- Entries of A have been reordered; otherwise unchanged

Insertion Sort Analysis

Outer Loop: Semantics

Once again, the outer **for** loop can be rewritten as a **while** loop for analysis. Since the inner loop is already a **while** loop, the new outer **while** loop would be as follows.

i = 1while $i \le n - 1$ do j = iInner loop of original program i = i + 1end while

This program will be analyzed in order establish the correctness and efficiency of the original one.

Computer Science 331

Insertion Sort Analysis

Outer Loop

Loop Invariant: at the beginning of each execution of the outer loop body:

- 1 ≤ i < n
- *A*[0], *A*[1], ..., *A*[*i* − 1] are sorted
- Entries of A have been reordered; otherwise unchanged.

Thus, the loop invariant, final execution of the loop body, and failure of the loop test establish that

- $A[0], \ldots, A[i-1]$ are sorted,
- as i = n when the loop terminates, A is sorted

Loop Variant: f(n, i) = n - i

Mike Jacobson (University of Calgary)

• number of iterations is f(n, 1) = n - 1

Insertion Sort Analysis

Computer Science 331

Analysis of Insertion Sort, Concluded

Worst-Case, Continued: For every integer $n \ge 1$ consider the operation on this algorithm on an input array *A* such that

- the length of A is n
- the entries of A are *distinct*
- A is sorted in **decreasing** order, instead of increasing order

It is possible to show that the algorithm uses $\Omega(n^2)$ steps on this input array.

Conclusion: The worst-case running time is in $\Theta(n^2)$

Best-Case: $\Theta(n)$ steps are used in the best case

• Proof: *Exercise.* Consider an array whose entries are already sorted as part of this.

Analysis of Insertion Sort

Mike Jacobson (University of Calgary)

Worst-case:

- inner loop iterates *i* times (constant steps per iteration)
- outer loop iterates n-1 times
- total number of steps is at most

$$c_0 + \sum_{i=1}^{n-1} c_1 i = c_0 + c_1 \frac{n(n-1)}{2}$$

Conclusion: Worst-case running time is in $O(n^2)$

Lecture #22-23

25 / 32

Lecture #22-23

Bubble Sort Description

Bubble Sort

Idea:

- Similar, in some ways, to "Selection Sort"
- Repeatedly sweep from right to left over the unsorted (rightmost) portion of the array, keeping the smallest element found and moving it to the left
- Result: After the *i*th stage.

 $A[0], A[1], \ldots, A[i-1]$

are the *i* smallest elements in the entire array, in sorted order

Pseudocode

void Bubble Sort(int [] A) for *i* from 0 to n-1 do for *i* from n-2 down to *i* do if A[j] > A[j + 1] then {Swap A[j] and A[j+1]} tmp = A[i]A[j] = A[j+1]A[i+1] = tmpend if end for end for

Mike Jacobson (University of Calgary)	Computer Science 331	Lecture #22-23 29 / 3	32	Mike Jacobson (University of Calgary)	Computer Science 331	Lecture #22-23	30 / 32
	Comparisons				Reference		
Comparisons				Reference			

All three algorithms have worst-case complexity $\Theta(n^2)$

- Selection sort only swaps O(n) elements, even in the worst case. This is an advantage when exchanges are more expensive than comparisons.
- On the other hand, Insertion sort has the best "best case" complexity. It also performs well if the input as already partly sorted.
- Bubble sort is generally not used in practice.

Note: Asymptotically faster algorithms exist and will be presented next. These "asymptotically faster" algorithms are better choices when the input size is large and worst-case performance is critical.

Further reading and Java code:

Data Structures & Algorithms in Java, Chapter 3

and.

Introduction to Algorithms, Chapter 2.1