Computer Science 331
 Classical Sorting Algorithms

Mike Jacobson

Department of Computer Science
University of Calgary
Lecture \#22-23
(1) Introduction
(2) Selection Sort

- Description
- Analysis
(3) Insertion Sort
- Description
- Analysis
(4) Bubble Sort
- Description
(5) Comparisons

6
Reference

The "Sorting Problem"

Two Classical Algorithms

Precondition:

A: Array of length n, for some integer $n \geq 1$, storing objects of some ordered type

Postcondition:

A: Elements have been permuted (reordered)
but not replaced, in such a way that

$$
A[i] \leq A[i+1] \quad \text { for } 0 \leq i<n-1
$$

Discussed today: two "classical" sorting algorithms

- Reasonably simple
- Work well on small arrays
- Each can be used to sort an array of size n using $\Theta\left(n^{2}\right)$ operations (comparisons and exchanges of elements) in the worst case
- None is a very good choice to sort large arrays: asymptotically faster algorithms exist!
A third (bubble sort) will be considered in the tutorials.

Idea:

- Repeatedly find "ith-smallest" element and exchange it with the element in location $A[i]$
- Result: After $i^{\text {th }}$ exchange,

$$
A[0], A[1], \ldots, A[i-1]
$$

are the i smallest elements in the entire array, in sorted order - and array elements have been reordered but are otherwise unchanged

```
```

void Selection Sort(int[] A)

```
```

void Selection Sort(int[] A)
fori from 0 to n-2 do
fori from 0 to n-2 do
min}=
min}=
for j from i+1 to n-1 do
for j from i+1 to n-1 do
if }A[j]<A[min] the
if }A[j]<A[min] the
min}=
min}=
end if
end if
end for
end for
{Swap A[i] and A[min]}
{Swap A[i] and A[min]}
tmp = A[i]
tmp = A[i]
A[i] = A[min]
A[i] = A[min]
A[min}]=tm
A[min}]=tm
end for

```
```

 end for
    ```
```

```
```

Example (cont.)

```
```

```
```

Example (cont.)

```
```

A: | 2 | 6 | 3 | 1 | 4 |
| :--- | :--- | :--- | :--- | :--- |

Idea: find smallest element in $A[i], \ldots, A[4]$ for each i from 0 to $n-1$ $i=0$

- set $\min =3(A[3]=1$ is minimum of $A[0], \ldots, A[4])$
- swap $A[0]$ and $A[3]$ ($A[0]$ sorted)

A: | 1 | 6 | 3 | 2 | 4 |
| :--- | :--- | :--- | :--- | :--- |

$i=1$

- set $\min =3(A[3]=2$ is minimum of $A[1], \ldots, A[4])$
- swap $A[1]$ and $A[3](A[0], A[1]$ sorted)

A: | 1 | 2 | 3 | 6 | 4 |
| :--- | :--- | :--- | :--- | :--- |

Example

$i=2$
- set $\min =2(A[2]=3$ is minimum of $A[2], \ldots, A[4])$
- swap $A[2]$ and $A[2](A[0], A[1], A[2]$ sorted)

 A: \begin{tabular}{|l|l|l|l|l|}
 \hline 1 \& 6 \& 3 \& 2 \& 4

\hline
\end{tabular}

$i=3$
- set $\min =4(A[4]=4$ is minimum of $A[3], A[4])$
- swap $A[3]$ and $A[4](A[0], A[1], A[2], A[3]$ sorted $)$

 A: \begin{tabular}{|l|l|l|l|l|}
 \hline 1 \& 2 \& 3 \& 4 \& 6

\hline
\end{tabular}

Finished! $A[0], \ldots, A[4]$ sorted

Inner Loop: Semantics

Inner Loop: Loop Invariant

The inner loop is a for loop, which does the same thing as the following code (which includes a while loop):

```
\(j=i+1\)
while \(j<n\) do
    if \((A[j]<A[m i n])\) then
                \(\min =j\)
    end if
    \(j=j+1\)
end while
```

We will supply a "loop invariant" and "loop variant" for the above while loop in order to analyze the behaviour of the corresponding for loop

Interpretation:

- $A[0] \leq A[1] \leq \cdots \leq A[i-1]$
- If $i>0$ then $A[i-1] \leq A[\ell]$ for every integer ℓ such that $i \leq \ell \leq n$
- $i \leq \min \leq j-1$ and $A[\min] \leq A[h]$ for every integer h such that $i \leq h \leq j-1$
- entries of A have been reordered, otherwise unchanged

```Inner Loop: Interpretation of the Loop Invariant```
 Inner Loop: Interpretation of the Loop Invariant

Loop Invariant: At the beginning of each execution of the inner loop body

- $i, \min \in \mathbb{N}$
- First subarray (with size i) is sorted with smallest elements:
- $0 \leq i \leq n-2$
- $A[h] \leq A[h+1]$ for $0 \leq h \leq i-2$
- if $i>0$ then $A[i-1] \leq A[h]$ for $i \leq h \leq n-1$
- Searching for the next-smallest element:
- $i+1 \leq j<n$
- $i \leq \min <j$
- $A[\min] \leq A[h]$ for $i \leq h<j$
- Entries of A have been reordered; otherwise unchanged

Selection Sort Analysis

```
Application of the Loop Invariant
```

Loop invariant, final execution of the loop body, and failure of the loop test ensures that:

- $j=n$ immediately after the final execution of the inner loop body
- $i \leq \min <n$ and $A[\min] \leq A[\ell]$ for all ℓ such that $i \leq \ell<n$
- $A[$ min $] \geq A[h]$ for all h such that $0 \leq h<i$

In other words, $A[\mathrm{~min}]$ is the value that should be moved into position $A[i]$

Loop Variant: $f(n, i, j)=n-j$

- decreasing integer function
- when $f(n, i, j)=0$ we have $j=n$ and the loop terminates

Application:

- initial value is $j=i+1$
- worst-case number of iterations is
$f(n, i, i+1)=n-(i+1)=n-1-i$

The outer loop is a for loop whose index variable i has values from 0 to $n-2$, inclusive

This does the same thing as a sequence of statements including

- an initialization statement, $i=0$
- a while loop with test " $i \leq n-2$ " whose body consists of the body of the for loop, together with a final statement $i=i+1$

We will provide a loop invariant and a loop variant for this while loop in order to analyze the given for loop

Outer Loop: Loop Invariant and Loop Variant

Analysis of Selection Sort

Loop Invariant: At the beginning of each execution of the outer loop body

- i is an integer such that $0 \leq i<n-1$
- $A[h] \leq A[h+1]$ for $0 \leq h<i$
- if $i>0, A[i-1] \leq A[\ell]$ for $i \leq \ell<n$
- Entries of A have been reordered; otherwise unchanged

Thus: $A[0], \ldots, A[i-1]$ are sorted and are the i smallest elements in A
Loop Variant: $f(n, i)=n-1-i$

- decreasing integer function
- when $f(n, i)=0$ we have $i=n-1$ and the loop terminates
- worst-case number of iterations is $f(n, 0)=n-1$

Insertion Sort

Best-Case:

- Both loops are for loops and a positive number of steps is used on each execution of the inner loop body
- Total number of steps is therefore at least

Conclusion: Every application of this algorithm to sort an array of length n uses $\Theta\left(n^{2}\right)$ steps

$$
\widehat{c}_{0}+\sum_{i=0}^{n-2} \widehat{c_{1}}(n-1-i) \in \Omega\left(n^{2}\right)
$$

Idea:

- Sort progressively larger subarrays
- $n-1$ stages, for $i=1,2, \ldots, n-1$
- At the end of the $i^{\text {th }}$ stage
- Entries originally in locations

$$
A[0], A[1], \ldots, A[i]
$$

have been reordered and are now sorted

- Entries in locations

$$
A[i+1], A[i+2], \ldots, A[n-1]
$$

have not yet been examined or moved

Example

A: | 2 | 6 | 3 | 1 | 4 |
| :--- | :--- | :--- | :--- | :--- |

Idea: insert $A[i]$ in the correct position in $A[0], \ldots, A[i-1]$

- initially, $i=0$ and $A[0]=2$ is sorted

$$
i=1
$$

- no swaps
- $A[0], A[1]$ sorted

A: | 2 | 6 | 3 | 1 | 4 |
| :--- | :--- | :--- | :--- | :--- |

$$
\underline{i=2}
$$

- swap $A[2]$ \& $A[1]$
- $A[0], A[1], A[2]$ sorted

$\mathrm{A}:$| 2 | 3 | 6 | 1 | 4 |
| :--- | :--- | :--- | :--- | :--- |

$i=3$

- swap $A[3] \& A[2]$, swap $A[2] \& A[1]$, swap $A[1] \& A[0]$
- $A[0], A[1], A[2], A[3]$ sorted

$\mathrm{A}:$| 1 | 2 | 3 | 6 | 4 |
| :--- | :--- | :--- | :--- | :--- |

$i=4$

- swap $A[4]$ \& $A[3]$
- $A[0], A[1], A[2], A[3], A[4]$ sorted

$\mathrm{A}:$| 1 | 2 | 3 | 4 | 6 |
| :--- | :--- | :--- | :--- | :--- |

Finished! $A[0], \ldots, A[4]$ sorted

Inner Loop: Interpretation of Loop Invariant

Can be used to establish that the following holds at the end of each execution of the inner loop body:

- i and j are integers such that $0 \leq j \leq i-1 \leq n-2$
- $A[0], \ldots, A[j-1]$ are sorted
- $A[j], \ldots, A[i]$ are sorted (so that $A[0], \ldots, A[i]$ are sorted if $j=0$)
- if $j>0$ and $j<i$, then $A[j-1] \leq A[j+1]$, so that $A[0], \ldots, A[i]$ are sorted if $A[j-1] \leq A[j]$
It follows that $A[0], \ldots, A[i]$ are sorted when this loop terminates.

Loop Invariant: at the beginning of each execution of the inner loop body

- $i, j \in \mathbb{N}$
- $1 \leq i<n$ and $0<j \leq i$
- $A[h] \leq A[h+1]$ for $0 \leq h<j-1$ and $j \leq h<i$
- if $j>0$ and $j<i$ then $A[j-1] \leq A[j+1]$
- Entries of A have been reordered; otherwise unchanged

Outer Loop: Semantics

Once again, the outer for loop can be rewritten as a while loop for analysis. Since the inner loop is already a while loop, the new outer while loop would be as follows.
$i=1$
while $i \leq n-1$ do
$j=i$
Inner loop of original program
$i=i+1$
end while

This program will be analyzed in order establish the correctness and efficiency of the original one.

Worst-case:

- inner loop iterates i times (constant steps per iteration)
- outer loop iterates $n-1$ times
- total number of steps is at most

$$
c_{0}+\sum_{i=1}^{n-1} c_{1} i=c_{0}+c_{1} \frac{n(n-1)}{2}
$$

Conclusion: Worst-case running time is in $O\left(n^{2}\right)$

Outer Loop

Loop Invariant: at the beginning of each execution of the outer loop body:

- $1 \leq i<n$
- $A[0], A[1], \ldots, A[i-1]$ are sorted
- Entries of A have been reordered; otherwise unchanged.

Thus, the loop invariant, final execution of the loop body, and failure of the loop test establish that

- $A[0], \ldots, A[i-1]$ are sorted,
- as $i=n$ when the loop terminates, A is sorted

Loop Variant: $f(n, i)=n-i$

- number of iterations is $f(n, 1)=n-1$

Analysis of Insertion Sort, Concluded

Worst-Case, Continued: For every integer $n \geq 1$ consider the operation on this algorithm on an input array A such that

- the length of A is n
- the entries of A are distinct
- A is sorted in decreasing order, instead of increasing order

It is possible to show that the algorithm uses $\Omega\left(n^{2}\right)$ steps on this input array.

Conclusion: The worst-case running time is in $\Theta\left(n^{2}\right)$
Best-Case: $\Theta(n)$ steps are used in the best case

- Proof: Exercise. Consider an array whose entries are already sorted as part of this.

Bubble Sort

Pseudocode

Idea:

- Similar, in some ways, to "Selection Sort"
- Repeatedly sweep from right to left over the unsorted (rightmost) portion of the array, keeping the smallest element found and moving it to the left
- Result: After the $i^{\text {th }}$ stage,

$$
A[0], A[1], \ldots, A[i-1]
$$

are the i smallest elements in the entire array, in sorted order

```
void Bubble Sort(int [] A)
    for i from 0 to n-1 do
        for j from n-2 down to i do
            if }A[j]>A[j+1] the
                {Swap A[j] and A[j+1]}
                tmp = A[j]
                A[j] = A[j+1]
                A[j+1] = tmp
            end if
        end for
    end for
```

Comparisons
Reference \quad Refence

All three algorithms have worst-case complexity $\Theta\left(n^{2}\right)$

- Selection sort only swaps $O(n)$ elements, even in the worst case. This is an advantage when exchanges are more expensive than comparisons.
- On the other hand, Insertion sort has the best "best case" complexity. It also performs well if the input as already partly sorted.
- Bubble sort is generally not used in practice.

Note: Asymptotically faster algorithms exist and will be presented next.
These "asymptotically faster" algorithms are better choices when the input size is large and worst-case performance is critical.

