
Computer Science 331
Quicksort

Mike Jacobson

Department of Computer Science
University of Calgary

Lecture #28

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 1 / 23

Outline

1 Introduction

2 Deterministic Quicksort
Deterministic Partitioning
Deterministic Quicksort
Analysis of Deterministic Quicksort

3 Randomized Quicksort

4 References

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 2 / 23

Introduction

Introduction

Quicksort:

A recursive “Divide and Conquer” sorting algorithm

A simple deterministic version uses

Θ(n2) operations to sort an array of size n in the worst case
Θ(n log n) operations on average, assuming all relative orderings of the
(distinct) input are equally likely

The expected number of operations used by a randomized version is
in O(n log n) for any input array of size n

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 3 / 23

Introduction

Idea

1 Choose an element p and reorder the array as follows:

p is in the correct spot if the array was sorted
elements < p are to the left of p in the array
elements > p are to the right of p in the array

2 Recursively sort subarray of elements to the left of p

3 Recursively sort subarray of elements to the right of p

Step 1 is the key to this method being efficient. Issues:

speed (can be done in time Θ(n))

position of p — want the final position of p to be the middle, so the
recursive calls are on arrays of size close to half as long as the original

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 4 / 23



Introduction

Partitioning

This is the process that will be used to carry out step 1.

Precondition:

low and high are integers such that 0 ≤ low ≤ high < A.length

Postcondition:

Value returned is an integer q such that low ≤ q ≤ high

A[h] ≤ A[q] for every integer h such that low ≤ h ≤ q− 1

A[h] ≥ A[q] for every integer h such that q + 1 ≤ h ≤ high

If h is an integer such that 0 ≤ h < low or such that
high < h < A.length then A[h] has not been changed

The entries of A have been reordered but are otherwise unchanged

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 5 / 23

Deterministic Quicksort Deterministic Partitioning

Deterministic Partitioning

Idea:

Pivot element used is the last element in the part of the array being
processed. Other versions of this algorithm use the first element
instead.

Sweep from left to right over the array, exchanging elements as
needed, so that values less than or equal to the pivot element are all
located before values that are greater than the pivot element, in the
part of the array that has been processed

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 6 / 23

Deterministic Quicksort Deterministic Partitioning

Pseudocode

int DPartition(int[] A, int low, int high)

p = A[high]; i = low; j = high-1
while i ≤ j do

while i ≤ j and A[i] ≤ p do
i = i + 1

end while
while j ≥ i and A[j] ≥ p do
j = j - 1

end while
if i < j then

Swap(A[i], A[j])
end if

end while
Swap(A[i], A[high])
return i

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 7 / 23

Deterministic Quicksort Deterministic Partitioning

Example

Consider the execution of DPartition(A, 3, 10) for A as follows:

3 4 5 6 7 8 9 10

· · · 2 6 4 1 7 3 0 5 · · ·

Using p = A[10] = 5 as the pivot. Initially i = 3, j = 9.

increment i until i = 4, decrement j until j = 9

i < j : swap A[4] & A[9]
3 4 5 6 7 8 9 10

· · · 2 0 4 1 7 3 6 5 · · ·

increment i until i = 7, decrement j until j = 8

i < j : swap A[7] & A[8]
3 4 5 6 7 8 9 10

· · · 2 0 4 1 3 7 6 5 · · ·

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 8 / 23



Deterministic Quicksort Deterministic Partitioning

Example (cont.)

increment i until i = 8, decrement j until j = 7

i ≮ j : no swap
3 4 5 6 7 8 9 10

· · · 2 0 4 1 3 7 6 5 · · ·

i = 8 and j = 7: loop terminates

swap A[8] & A[9]
3 4 5 6 7 8 9 10

· · · 2 0 4 1 3 5 6 7 · · ·

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 9 / 23

Deterministic Quicksort Deterministic Partitioning

Loop Invariant (Main Loop)

Suppose low and high are integers such that
0 ≤ low ≤ high < length(A) and p = A[high].

The following properties identify a loop invariant for the while loop:

1 low ≤ i ≤ high and low− 1 ≤ j ≤ high− 1

2 i ≤ j+1

3 A[`] ≤ p for low ≤ ` ≤ i

4 A[`] ≥ p for j ≤ ` ≤ high

5 A[h] has been unchanged for each integer h such that 0 ≤ h < p or
r < h < A.length.

6 Entries of A are reordered but otherwise unchanged

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 10 / 23

Deterministic Quicksort Deterministic Partitioning

Partial Correctness

If the program halts then the following conditions are satisfied on
termination, if q is the value that is returned:

1 q is an integer such that low ≤ q ≤ high.
2 The following relationships hold for each integer ` such that
low ≤ ` ≤ high :

if low ≤ ` < q then A[`] ≤ A[q],
if q < ` ≤ r then A[`] > A[q].

3 If h is an integer such that 0 ≤ h < p or r < h < A.length then
A[h] has not been changed.

4 Entries of A are reordered but otherwise unchanged

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 11 / 23

Deterministic Quicksort Deterministic Partitioning

Termination and Efficiency

Loop Variant: j + 1− i

Justification: decreases, if ≤ 0 loop terminates (i = j + 1)

Efficiency:

Each location of the array is examined exactly 1 time.

Each examination requires (at most) a constant number of operations.

Therefore the cost to execute the loop is in O(high− low).

Since the rest of the program only uses a constant number of
operations, it is clear that the program terminates and that it uses
O(high− low) operations in the worst case.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 12 / 23



Deterministic Quicksort Deterministic Quicksort

Quicksort Algorithm

Idea: Partition the array, then recursively sort the pieces before and after
the pivot element.

Calling Sequence to sort A: quickSort(A, 0, A.length-1)

void quickSort(int[] A, int low, int high)

if low < high then
q = DPartition(A, low, high)
quickSort(A, low, q-1)
quickSort(A, q+1, high)

end if

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 13 / 23

Deterministic Quicksort Analysis of Deterministic Quicksort

Performance of Deterministic Quicksort

Performance of Quicksort depends on whether the partitioning is balanced
or unbalanced.

Worst-case Partitioning:
Partition produces two subarrays of size 0 and n − 1

Best-case Partitioning:
Partition produces two subarrays of size no more than n/2
(one is of size bn/2c and one of size dn/2e − 1)

Balanced Partitioning:
Partition produces two subarrays of proportional size α(n − 1) and
(1− α)(n − 1) for 0 < α < 1

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 14 / 23

Deterministic Quicksort Analysis of Deterministic Quicksort

Worst-Case Performance of Deterministic Quicksort

Let T (n) be the number of steps used by Quicksort to sort an array of
length n in the worst case. Then, for worst-case partitioning

T (n) ≤

{
c0 if n = 0, 1,

c1n + T (0) + T (n − 1) if n ≥ 2.

Theorem 1

T (n) ≤ nc0 + n(n+1)
2 c1 − c1.

Method of Proof: Induction on n.

Application: Deterministic Quicksort takes O(n2) steps to sort an array
of length n in the worst case.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 15 / 23

Deterministic Quicksort Analysis of Deterministic Quicksort

Worst-Case Performance of Deterministic Quicksort

Observation:
If Deterministic Quicksort is applied to an array of length n whose entries
are already sorted then this algorithm uses Ω(n2) steps.

Conclusion: Deterministic Quicksort uses Θ(n2) to sort an array of
length n in the worst case.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 16 / 23



Deterministic Quicksort Analysis of Deterministic Quicksort

Best-Case Performance of Deterministic Quicksort

Let T (n) be the number of steps used by Quicksort to sort an array of
length n in the best case. Then, for best-case partitioning

T (n) ≤

{
c0 if n = 0, 1,

c1n + 2T (n/2) if n ≥ 2.

Theorem 2

T (n) ≤ nc0 + (n log2 n)c1.

Method of Proof: Induction on n.

Application: Deterministic Quicksort takes O(n log2 n) steps in the best
case to sort an array of length n.

Corollary: Deterministic Quicksort takes O(n logc n) steps with balanced
partitioning, where c = min{ 1

α ,
1

1−α}.
Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 17 / 23

Deterministic Quicksort Analysis of Deterministic Quicksort

Average-Case Analysis of Deterministic Quicksort

Assumption: Entries of A are distinct and all n! relative orderings of these
inputs are equally likely

Result: It can be established that the expected cost of Quicksort is in
O(n log n) if the above assumption for analysis is valid (using heights of
binary search trees!).

Intuition:

In the average case, partition produces a mix of balanced and
unbalanced partitions.

On a random input array, partition is more likely to produce a
balanced partition than an unbalanced partition.

It is unlikely that the partitioning always happens in the same way at
every recursion. Thus, unbalanced partitions will result in balanced
partitions in subsequent partitions.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 18 / 23

Randomized Quicksort

Randomized Partitioning

Idea: Choose the pivot element randomly from the set of values in the
part of the array to be processed. Then proceed as before.

int RPartition(int [] A, int low, int high)

Choose i randomly and uniformly from the set of integers between low
and high (inclusive).
Swap: tmp = A[i ]; A[i ] = A[r ]; A[r ] = tmp
return DPartition(A, p, r)

Efficiency: This algorithm terminates using O(high− low) operations.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 19 / 23

Randomized Quicksort

Randomized Quicksort

Idea: Same as deterministic Quicksort, except that randomized
partitioning is used.

Call RQuickSort(A, 0, A.length-1) to sort A:

void RQuickSort(int [] A, int low, int high)

if low < high then
q = RPartition(A, low, high)
RQuickSort(A, low, q-1)
RQuickSort(A, q+1, high)

end if

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 20 / 23



Randomized Quicksort

Analysis of Randomized Quicksort

The previous analysis can be modified to establish that the “worst-case
expected cost” of Randomized Quicksort to sort an array with distinct
entries is in O(n log n) as well.

Note: it is possible to obtain a worst-case running time of Θ(n log n)

careful (but deterministic) selection of the pivot (see Introduction to
Algorithms, Chapter 9.3)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 21 / 23

Randomized Quicksort

An Annoying Problem

An Annoying Problem: Both versions of Quicksort, given above, use
Θ(n2) operations to “sort” an array of length n if the array contains n
copies of the same value!

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 22 / 23

References

References

Further Reading and Java Code:

Introduction to Algorithms, Chapter 7

Data Structures & Algorithms in Java, Chapter 7

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #28 23 / 23


	Introduction
	Deterministic Quicksort
	Deterministic Partitioning
	Deterministic Quicksort
	Analysis of Deterministic Quicksort

	Randomized Quicksort
	References

