Computer Science 331

Graphs and Their Representations

Mike Jacobson

Department of Computer Science University of Calgary

Lecture #29

Mike Jacobson (University of Calgary)

Computer Science 331

Lecture #29

Mike Jacobson (University of Calgary)

Computer Science 331

Lecture #29

Introduction

Undirected Graphs

An undirected graph G = (V, E) consists of

- a finite, nonempty set *V* of *vertices* or "nodes"
- a set E of edges, where each "edge" is an unordered pair of distinct elements of V

Also may be written as V(G) and E(G) to indicate association to a particular graph.

Undirected graphs, and their generalizations, can be used to model

- communication networks
- knowledge and data bases

Graphs and their algorithms will be studied for the rest of this course.

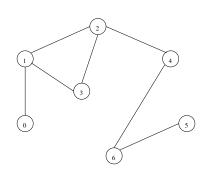
Outline

- Introduction
- 2 Representations
 - Adjacency-Matrices
 - Adjacency-Lists
- Generalizations
 - Directed Graphs
 - Weighted Graphs
- References

Introduction

Example

G:



G = (V, E) where

- $V = \{0, 1, 2, 3, 4, 5, 6\}$
- $E = \{(0,1), (1,2), (1,3), (2,3), (2,4), (4,6), (5,6)\}$

Introduction

Operations

Terminology

If $u, v \in V$ and $u \neq v$ then u and v are **neighbours** (or, "u is **adjacent** to v") if $(u, v) \in E$.

If $u \in V$ then the **degree** of u is the number of neighbours of u.

Note that if |V| = n then $|E| \le \binom{n}{2} = \frac{n(n-1)}{2}$.

- The graph G = (V, E) is **dense** if $|E| \in \Omega(n^2)$ (for n = |V|)
- The graph G = (V, E) is **sparse** if |E| is significantly smaller than n^2 .

Mike Jacobson (University of Calgary)

Computer Science 331

Mike Jacobson (University of Calgary)

Computer Science 331

Representations Adjacency-Matrices

Adjacency-Matrix Representation

Assumption: Vertices are numbered 0, 1, ..., |V| - 1 in some way.

The adjacency-matrix representation of G consists of a $|V| \times |V|$ matrix A_G , with $(i,j)^{\text{th}}$ entry $a_{i,j}$ for $0 \le i,j < |V|$, where

$$a_{i,j} = \begin{cases} 1 & \text{if } (i,j) \in E, \\ 0 & \text{if } (i,j) \notin E. \end{cases}$$

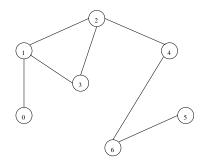
The following operations should be supported:

- Creation: It should be possible to
 - initialize a graph to be empty (with no vertices or edges),
 - add another vertex
 - add an edge (between a pair of existing vertices that are not already neighbours);
- Queries: It should be possible to
 - ask whether a given pair of vertices are neighbours,
 - determine the number of vertices,
 - determine the number of edges;
- Iterate: It should be possible to iterate over
 - the set of vertices in the graph, as well as
 - the set of neighbours of any given vertex.

Adjacency-Matrices

Example

G:



 A_G :

Γ0	1 0 1 1 0 0	0	0	0	0	0
1	0	1	1	0	0	0
0	1	0	1	1	0	0
0	1	1	0	0	0	0
0	0	1	0	0	0	1
0	0	0	0	0	0	1
0	0	0	0	1	1	0

Note: A_G is a **symmetric** matrix: $a_{i,j} = a_{j,i}$ for $0 \le i,j < |V|$.

Properties

Adjacency-List Representation

Properties of This Representation:

- simple
- reasonably space-efficient if *G* is **dense**
- **not** space-efficient if *G* is sparse!
- possible to add an edge or determine whether two vertices are neighbours in constant time
- iterating over the set of neighbours of a vertex requires $\Theta(|V|)$ operations, even if G is sparse

 \dots a good choice if G is small or dense, not if large and sparse

The adjacency-list representation of G = (V, E) consists of an array Adj_G of |V| lists, one for each vertex in V.

For each $u \in V$, the adjacency list $Adj_G(u)$ contains (pointers to) all the vertices $v \in V$ such that $(u, v) \in E$.

Mike Jacobson (University of Calgary)

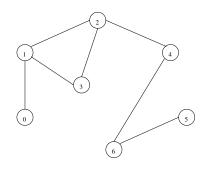
Computer Science 331

Mike Jacobson (University of Calgary)

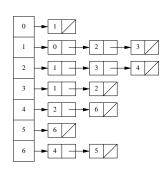
Computer Science 331

Example

G:



 Adj_G :



Properties

Properties of This Representation:

- space-efficient if *G* is **sparse**
- not really space-efficient if G is (extremely) dense!
- checking whether a pair of vertices are neighbours requires more than constant time — number of operations is linear in the degree of one of the inputs, in the worst case
- adding an edge also requires this cost (if error checking is to be included)
- iterating over the set of neighbours of a vertex is efficient: Number of operations used is linear in the degree of the input vertex

 \dots a good choice if G is large and sparse; not if small or dense

Mike Jacobson (University of Calgary)

Computer Science 331

Lecture #29

Mike Jacobson (University of Calgary)

Computer Science 331

Lecture #29

Directed Graphs

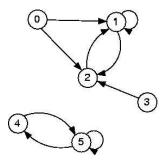
A directed graph ("digraph") G = (V, E) consists of

- a finite, nonempty set V of vertices or nodes, and
- a set E of **ordered** pairs of elements of E (that are not necessarily distinct)

Directed graphs can be represented using adjacency-matrices or adjacency-lists, in much the same way that undirected graphs can.

Example

G:



Adjacency-Matrix:

Γ0	1	1	0	0	[0
0	1	1	0	0	0
0 0 0 0	1	0	0	0	0 0 0 0 1 1
0	0	1	0	0	0
0	0	0	0	0	1
0	0	0	0	1	1

Mike Jacobson (University of Calgary)

Computer Science 331

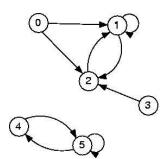
Mike Jacobson (University of Calgary)

Computer Science 331

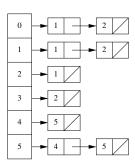
Generalizations Directed Graphs

Example

G:



Adjacency-List:



Weighted Graphs

A weighted graph is an undirected or directed graph G = (V, E) for which each edge has an associated weight.

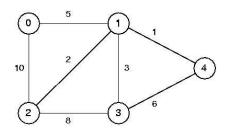
The weights are typically given an associated weight function

$$w: E \to \mathbb{R}$$

Weighted graphs can be represented using adjacency-matrices or adjacency lists as well.

Example

G:



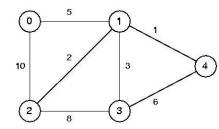
Adjacency-Matrix:

$$\begin{bmatrix} 0 & 5 & 10 & 0 & 0 \\ 5 & 0 & 2 & 3 & 1 \\ 10 & 2 & 0 & 8 & 0 \\ 0 & 3 & 8 & 0 & 6 \\ 0 & 1 & 0 & 6 & 0 \end{bmatrix}$$

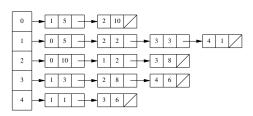
Use NIL instead of 0 if weights can be < 0

Example

G:



Adjacency-List:



Mike Jacobson (University of Calgary)

Computer Science 331

Lecture #29

Mike Jacobson (University of Calgary)

Computer Science 331

Lecture #29

References

References

Graphs in Java

• Java's standard libraries do not currently include implementations of graphs or graph algorithms

Further Reading:

- Data Structures & Algorithms in Java, Chapter 13
- Introduction to Algorithms, Chapter 23