

Trees, Spanning Trees and Subgraphs

Introduction

Paths and Simple Paths

Definition: A *path* in an undirected graph G = (V, E) is a sequence of zero or more edges in G

$$(v_0, v_1), (v_1, v_2), (v_2, v_3), \dots, (v_{k-1}, v_k)$$

where the second vertex (shown) in each edge is the first vertex (shown) in the next edge.

The path shown above is a path from v_0 (the first vertex in the first edge) to v_k (the second vertex in the final edge).

This is a *simple path* if v_0, v_1, \ldots, v_k are *distinct*.

Goals for the Lecture:

- We will introduce a particular type of graph a *(free) tree* that will be used in definitions of graph problems, and graph algorithms, throughout the rest of this course
- Additional important definitions and graph properties will also be introduced

Paths and Cycles

Paths and Simple Paths

Cycles and Simple Cycles

Definition: A cycle (in an undirected graph G = (V, E)) is a path with length greater than zero from some vertex **to itself**:

Definition: The *length* of a path is the length of the *sequence* of edges in it.

Thus the path shown in the previous slide has length k.

Definition: An undirected graph G = (V, E) is a *connected* graph if there is a path from u to v, for *every* pair of vertices $u, v \in V$.

A cycle $(v_0, v_1), (v_1, v_2), \dots, (v_{k-2}, v_{k-1}), (v_{k-1}, v_0)$ is a simple cycle if v_0, v_1, \dots, v_{k-1} are distinct.

Computer Science 33

Trees Definition

A graph G = (V, E) is *acyclic* if it does not have any cycles.

Mike Jacobson (University of Calgary) Computer Science 331

Paths and Cycles

Problem: There is No Completely Standard Terminology!

Problem with Terminology

- Different references tend to use these terms differently!
- For example, in some textbooks, a simple cycle is considered to be a kind of *simple path*, and the definition of "cycle" given is the same as the definition of *simple cycle* given above
- Other references only call something a "path" if it is a *simple path*, as defined above; they only call something a "cycle" if it is a *simple cycle*; and they use the term *walk* to refer to the more general kind of "path" that is defined in these notes

Consequence: You should check the definitions of these terms in any other references that you use!

Trees

Mike Jacobson (University of Calgary)

Definition: A *free tree* is a connected acyclic graph.

Frequently we just call a free tree a "tree."

• If we identify one vertex as the "root," then the result is the kind of "rooted tree" we have seen before.

Computer Science 331

Lecture #30

Lecture #30

Properties 2

Consider graph G = (V, E):

- If G is connected then $|E| \ge |V| 1$
- **2** If *G* is acyclic then $|E| \leq |V| 1$
- **③** If G is connected and acyclic then |E| = |V| 1

See the lecture supplement for proofs.

Consider graph G = (V, E). We will use the following properties to characterize trees:

- If G is a tree then it has |V| 1 edges
- 2 An acyclic graph with |V| 1 edges is a tree
- **③** A connected graph with |V| 1 edges is a tree

See the lecture supplement for proofs.

Suppose G = (V, E) is as follows.

с

- If G = (V, E) is a connected undirected graph, then a spanning tree of G is a subgraph $\widehat{G} = (\widehat{V}, \widehat{E})$ of G such that
 - $\widehat{V} = V$ (so that \widehat{G} includes all the vertices in G)
 - $\widehat{E} \subseteq E$
 - \widehat{G} is a tree.

g

Example Tree 1

Example Tree 2

Is the following graph $G_1 = (V_1, E_1)$ a spanning tree of G? Yes!

Is the following graph $G_2 = (V_2, E_2)$ also a spanning tree of G? Yes!

Mike Jacobson (University of Calgary)	Computer Science 331	Lecture #30	13 / 20	Mike Jacobson (Universit
	Spanning Trees			
Example Tree 3				Subgraphs a

Is the following graph $G_3 = (V_3, E_3)$ is also a spanning tree of G? No! Doesn't span G (vertex g missing)

and Induced Subgraphs

Computer Science 331

Predecessor Subgraphs Subgraphs and Induced Subgraphs

Suppose G = (V, E) is a graph.

of Calgary

- $\widehat{G} = (\widehat{V}, \widehat{E})$ is a *subgraph* of G if \widehat{G} is a graph such that $\widehat{V} \subseteq V$ and $\widehat{E} \subseteq E$
- $\widetilde{G} = (\widetilde{V}, \widetilde{E})$ is an *induced subgraph* of G if
 - \widetilde{G} is a subgraph of G and, furthermore
 - $\widetilde{E} = \left\{ (u, v) \in E \mid u, v \in \widetilde{V} \right\}$, that is, \widetilde{G} includes *all* the edges from *G* that it possibly could

Lecture #30

Predecessor Subgraphs Subgraphs and Induced Subgraphs

Example

 G_2 is an *induced subgraph* of G_1 .

 G_3 is a *subgraph* of G_1 , but G_3 is **not** an *induced subgraph* of G_1 .

Predecessor Subgraphs Predecessor Subgraphs

Predecessor Subgraphs

Let G = (V, E) and let $s \in V$. Construct a subset V_p of V, a subset E_p of E, and a function $\pi : V \to V \cup \{\text{NIL}\}$ as follows.

- Initially, $V_p = \{s\}$, $E_p = \emptyset$, and $\pi(v) = \text{NIL}$ for every vertex $v \in V$.
- The following step is performed, between 0 and |V| 1 times:
 - Pick some vertex u from the set V_p .
 - Pick some vertex v ∈ V such that v ∉ V_p and (u, v) ∈ E. (The process must end if this is not possible to do.)
 - Set $\pi(v)$ to be u, add the vertex v to the set V_p , and add the edge $(u, v) = (\pi(v), v)$ to E_p

Note that $V_p \subseteq V$, $E_p \subseteq E$, and each edge in E_p connects pairs of vertices that each belongs to V_p each time the above (interior) step is performed — so that $G_p = (V_p, E_p)$ is always a *subgraph* of G.

Mike Jacobson (University of Calgary) Computer Science 331	Lecture #30 17 / 20	Mike Jacobson (University of Calgary) Computer Science 331 Lecture #30 18 / 20
Example		Example Predecessor Subgraph Property
		The graph $G_p = (V_p, E_p)$ that has been constructed is called a <i>predecessor</i> subgraph.
a b c d d e f f		Claim: Let $G_p = (V_p, E_p)$ be a predecessor subgraph of an undirected graph G. a) G_p is a subgraph of G and G_p is a tree. b) If $V_p = V$ then G_p is a spanning tree of G.
		Proof.
a b c d e f g h i π NIL a b a b e h e f		Part (a) is true because $ E_p = V_p - 1$, by the construction of V_p and of E_p , and G_p is always connected, so G_p is a tree, as well as a subgraph of G . Part (b) now follows by the fact that E_p is a subset of E , so that G_p is a subgraph of G , and by the fact that $V_p = V$.

Mike Jacobson (University of Calgary)