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Introduction

Trees, Spanning Trees and Subgraphs

Goals for the Lecture:

We will introduce a particular type of graph — a (free) tree — that
will be used in definitions of graph problems, and graph algorithms,
throughout the rest of this course

Additional important definitions and graph properties will also be
introduced
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Paths and Cycles

Paths and Simple Paths

Definition: A path in an undirected graph G = (V ,E ) is a sequence of
zero or more edges in G

(v0, v1), (v1, v2), (v2, v3), . . . , (vk−1, vk)

where the second vertex (shown) in each edge is the first vertex (shown) in
the next edge.
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The path shown above is a path from v0 (the first vertex in the first edge)
to vk (the second vertex in the final edge).

This is a simple path if v0, v1, . . . , vk are distinct.
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Paths and Cycles

Paths and Simple Paths

Definition: The length of a path is the length of the sequence of edges in
it.

Thus the path shown in the previous slide has length k.

Definition: An undirected graph G = (V ,E ) is a connected graph if there
is a path from u to v , for every pair of vertices u, v ∈ V .

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #30 5 / 20

Paths and Cycles

Cycles and Simple Cycles

Definition: A cycle (in an undirected graph G = (V ,E )) is a path with
length greater than zero from some vertex to itself:
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A cycle (v0, v1), (v1, v2), . . . , (vk−2, vk−1), (vk−1, v0) is a simple cycle if
v0, v1, . . . , vk−1 are distinct.

A graph G = (V ,E ) is acyclic if it does not have any cycles.
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Paths and Cycles

Problem: There is No Completely Standard Terminology!

Problem with Terminology

Different references tend to use these terms differently!

For example, in some textbooks, a simple cycle is considered to be a
kind of simple path, and the definition of “cycle” given is the same as
the definition of simple cycle given above

Other references only call something a “path” if it is a simple path, as
defined above; they only call something a “cycle” if it is a simple
cycle; and they use the term walk to refer to the more general kind of
“path” that is defined in these notes

Consequence: You should check the definitions of these terms in any
other references that you use!
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Trees Definition

Trees

Definition: A free tree is a connected acyclic graph.

Frequently we just call a free tree a “tree.”

If we identify one vertex as the “root,” then the result is the kind of
“rooted tree” we have seen before.
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Trees Properties

Properties 1

Consider graph G = (V ,E ):

1 If G is connected then |E | ≥ |V | − 1

2 If G is acyclic then |E | ≤ |V | − 1

3 If G is connected and acyclic then |E | = |V | − 1

See the lecture supplement for proofs.
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Trees Properties

Properties 2

Consider graph G = (V ,E ). We will use the following properties to
characterize trees:

1 If G is a tree then it has |V | − 1 edges

2 An acyclic graph with |V | − 1 edges is a tree

3 A connected graph with |V | − 1 edges is a tree

See the lecture supplement for proofs.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #30 10 / 20

Spanning Trees

Spanning Trees

If G = (V ,E ) is a connected undirected graph, then a spanning tree of G
is a subgraph Ĝ = (V̂ , Ê ) of G such that

V̂ = V (so that Ĝ includes all the vertices in G )

Ê ⊆ E

Ĝ is a tree.
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Spanning Trees

Example

Suppose G = (V ,E ) is as follows.
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Spanning Trees

Example Tree 1

Is the following graph G1 = (V1,E1) a spanning tree of G? Yes!
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Spanning Trees

Example Tree 2

Is the following graph G2 = (V2,E2) also a spanning tree of G? Yes!
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Spanning Trees

Example Tree 3

Is the following graph G3 = (V3,E3) is also a spanning tree of G? No!
Doesn’t span G (vertex g missing)
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Predecessor Subgraphs Subgraphs and Induced Subgraphs

Subgraphs and Induced Subgraphs

Suppose G = (V ,E ) is a graph.

Ĝ = (V̂ , Ê ) is a subgraph of G if Ĝ is a graph such that V̂ ⊆ V and
Ê ⊆ E

G̃ = (Ṽ , Ẽ ) is an induced subgraph of G if

G̃ is a subgraph of G and, furthermore

Ẽ =
{

(u, v) ∈ E | u, v ∈ Ṽ
}

, that is, G̃ includes all the edges from G

that it possibly could
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Predecessor Subgraphs Subgraphs and Induced Subgraphs

Example

G2 is an induced subgraph of G1.
G3 is a subgraph of G1, but G3 is not an induced subgraph of G1.
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Predecessor Subgraphs Predecessor Subgraphs

Predecessor Subgraphs

Let G = (V ,E ) and let s ∈ V . Construct a subset Vp of V , a subset Ep

of E , and a function π : V → V ∪ {NIL} as follows.

Initially, Vp = {s}, Ep = ∅, and π(v) = NIL for every vertex v ∈ V .

The following step is performed, between 0 and |V | − 1 times:

Pick some vertex u from the set Vp.
Pick some vertex v ∈ V such that v /∈ Vp and (u, v) ∈ E . (The
process must end if this is not possible to do.)
Set π(v) to be u, add the vertex v to the set Vp, and add the edge
(u, v) = (π(v), v) to Ep

Note that Vp ⊆ V , Ep ⊆ E , and each edge in Ep connects pairs of vertices
that each belongs to Vp each time the above (interior) step is performed
— so that Gp = (Vp,Ep) is always a subgraph of G .
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Example

Example
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Example

Predecessor Subgraph Property

The graph Gp = (Vp,Ep) that has been constructed is called a predecessor
subgraph.

Claim:

Let Gp = (Vp,Ep) be a predecessor subgraph of an undirected graph G.

a) Gp is a subgraph of G and Gp is a tree.

b) If Vp = V then Gp is a spanning tree of G.

Proof.

Part (a) is true because |Ep| = |Vp| − 1, by the construction of Vp and
of Ep, and Gp is always connected, so Gp is a tree, as well as a subgraph
of G .

Part (b) now follows by the fact that Ep is a subset of E , so that Gp is a
subgraph of G , and by the fact that Vp = V .
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