
Computer Science 331
Trees, Spanning Trees, and Subgraphs

Mike Jacobson

Department of Computer Science
University of Calgary

Lecture #30

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #30 1 / 20

Outline

1 Introduction

2 Paths and Cycles

3 Trees
Definition
Properties

4 Spanning Trees

5 Predecessor Subgraphs
Subgraphs and Induced Subgraphs
Predecessor Subgraphs

6 Example

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #30 2 / 20

Introduction

Trees, Spanning Trees and Subgraphs

Goals for the Lecture:

We will introduce a particular type of graph — a (free) tree — that
will be used in definitions of graph problems, and graph algorithms,
throughout the rest of this course

Additional important definitions and graph properties will also be
introduced

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #30 3 / 20

Paths and Cycles

Paths and Simple Paths

Definition: A path in an undirected graph G = (V ,E) is a sequence of
zero or more edges in G

(v0, v1), (v1, v2), (v2, v3), . . . , (vk−1, vk)

where the second vertex (shown) in each edge is the first vertex (shown) in
the next edge.

v
0

v
1

v
2

. . . v
k

v
3

v
k-1

The path shown above is a path from v0 (the first vertex in the first edge)
to vk (the second vertex in the final edge).

This is a simple path if v0, v1, . . . , vk are distinct.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #30 4 / 20

Paths and Cycles

Paths and Simple Paths

Definition: The length of a path is the length of the sequence of edges in
it.

Thus the path shown in the previous slide has length k.

Definition: An undirected graph G = (V ,E) is a connected graph if there
is a path from u to v , for every pair of vertices u, v ∈ V .

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #30 5 / 20

Paths and Cycles

Cycles and Simple Cycles

Definition: A cycle (in an undirected graph G = (V ,E)) is a path with
length greater than zero from some vertex to itself:

v
k-2

v
k-1

v
3

v
2

v
1

v
0

.
.
.

A cycle (v0, v1), (v1, v2), . . . , (vk−2, vk−1), (vk−1, v0) is a simple cycle if
v0, v1, . . . , vk−1 are distinct.

A graph G = (V ,E) is acyclic if it does not have any cycles.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #30 6 / 20

Paths and Cycles

Problem: There is No Completely Standard Terminology!

Problem with Terminology

Different references tend to use these terms differently!

For example, in some textbooks, a simple cycle is considered to be a
kind of simple path, and the definition of “cycle” given is the same as
the definition of simple cycle given above

Other references only call something a “path” if it is a simple path, as
defined above; they only call something a “cycle” if it is a simple
cycle; and they use the term walk to refer to the more general kind of
“path” that is defined in these notes

Consequence: You should check the definitions of these terms in any
other references that you use!

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #30 7 / 20

Trees Definition

Trees

Definition: A free tree is a connected acyclic graph.

Frequently we just call a free tree a “tree.”

If we identify one vertex as the “root,” then the result is the kind of
“rooted tree” we have seen before.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #30 8 / 20

Trees Properties

Properties 1

Consider graph G = (V ,E):

1 If G is connected then |E | ≥ |V | − 1

2 If G is acyclic then |E | ≤ |V | − 1

3 If G is connected and acyclic then |E | = |V | − 1

See the lecture supplement for proofs.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #30 9 / 20

Trees Properties

Properties 2

Consider graph G = (V ,E). We will use the following properties to
characterize trees:

1 If G is a tree then it has |V | − 1 edges

2 An acyclic graph with |V | − 1 edges is a tree

3 A connected graph with |V | − 1 edges is a tree

See the lecture supplement for proofs.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #30 10 / 20

Spanning Trees

Spanning Trees

If G = (V ,E) is a connected undirected graph, then a spanning tree of G
is a subgraph Ĝ = (V̂ , Ê) of G such that

V̂ = V (so that Ĝ includes all the vertices in G)

Ê ⊆ E

Ĝ is a tree.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #30 11 / 20

Spanning Trees

Example

Suppose G = (V ,E) is as follows.

a

c

b

d

e

f

g

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #30 12 / 20

Spanning Trees

Example Tree 1

Is the following graph G1 = (V1,E1) a spanning tree of G? Yes!

a

c

b

d

e

f

g

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #30 13 / 20

Spanning Trees

Example Tree 2

Is the following graph G2 = (V2,E2) also a spanning tree of G? Yes!

a

c

b

d

e

f

g

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #30 14 / 20

Spanning Trees

Example Tree 3

Is the following graph G3 = (V3,E3) is also a spanning tree of G? No!
Doesn’t span G (vertex g missing)

a

c

b

d

e

f

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #30 15 / 20

Predecessor Subgraphs Subgraphs and Induced Subgraphs

Subgraphs and Induced Subgraphs

Suppose G = (V ,E) is a graph.

Ĝ = (V̂ , Ê) is a subgraph of G if Ĝ is a graph such that V̂ ⊆ V and
Ê ⊆ E

G̃ = (Ṽ , Ẽ) is an induced subgraph of G if

G̃ is a subgraph of G and, furthermore

Ẽ =
{

(u, v) ∈ E | u, v ∈ Ṽ
}

, that is, G̃ includes all the edges from G

that it possibly could

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #30 16 / 20

Predecessor Subgraphs Subgraphs and Induced Subgraphs

Example

G2 is an induced subgraph of G1.
G3 is a subgraph of G1, but G3 is not an induced subgraph of G1.

a

b c

a

b c

G32G

a

b c

d

1G

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #30 17 / 20

Predecessor Subgraphs Predecessor Subgraphs

Predecessor Subgraphs

Let G = (V ,E) and let s ∈ V . Construct a subset Vp of V , a subset Ep

of E , and a function π : V → V ∪ {NIL} as follows.

Initially, Vp = {s}, Ep = ∅, and π(v) = NIL for every vertex v ∈ V .

The following step is performed, between 0 and |V | − 1 times:

Pick some vertex u from the set Vp.
Pick some vertex v ∈ V such that v /∈ Vp and (u, v) ∈ E . (The
process must end if this is not possible to do.)
Set π(v) to be u, add the vertex v to the set Vp, and add the edge
(u, v) = (π(v), v) to Ep

Note that Vp ⊆ V , Ep ⊆ E , and each edge in Ep connects pairs of vertices
that each belongs to Vp each time the above (interior) step is performed
— so that Gp = (Vp,Ep) is always a subgraph of G .

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #30 18 / 20

Example

Example

a b c

d e f

g h i

a b c d e f g h i
π NIL a b a b e h e f

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #30 19 / 20

Example

Predecessor Subgraph Property

The graph Gp = (Vp,Ep) that has been constructed is called a predecessor
subgraph.

Claim:

Let Gp = (Vp,Ep) be a predecessor subgraph of an undirected graph G.

a) Gp is a subgraph of G and Gp is a tree.

b) If Vp = V then Gp is a spanning tree of G.

Proof.

Part (a) is true because |Ep| = |Vp| − 1, by the construction of Vp and
of Ep, and Gp is always connected, so Gp is a tree, as well as a subgraph
of G .

Part (b) now follows by the fact that Ep is a subset of E , so that Gp is a
subgraph of G , and by the fact that Vp = V .

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #30 20 / 20

	Introduction
	Paths and Cycles
	Trees
	Definition
	Properties

	Spanning Trees
	Predecessor Subgraphs
	Subgraphs and Induced Subgraphs
	Predecessor Subgraphs

	Example

