
Computer Science 331
Average Case Analysis: Binary Search Trees

Mike Jacobson

Department of Computer Science
University of Calgary

Lecture Supplement

Mike Jacobson (University of Calgary) Computer Science 331 Lecture Supplement 1 / 22

Outline

1 Motivation and Objective

2 Distribution of Binary Search Trees

3 Exponential-Height
Definition
Upper Bound on Average Exponential Height

4 Average Height
Relating Height and Exponential Height

Mike Jacobson (University of Calgary) Computer Science 331 Lecture Supplement 2 / 22

Motivation and Objective

Cost of Binary Search Tree Operations

Operations on a Binary Search Tree T . . .

Require a walk down (part of) a path from the root to a leaf of the
tree

Constant time is required for each node that is visited

Thus, the worst-case time of each operation is:

linear in the height of T

Mike Jacobson (University of Calgary) Computer Science 331 Lecture Supplement 3 / 22

Motivation and Objective

Bounds on Height: Worst- and Average-Case

If a binary search tree T has size n and height h then

n ≤ 2h+1 − 1, so that h ≥ log2(n + 1)− 1

and
n ≥ h + 1, so that h ≤ n − 1 .

Worst Case: These bounds cannot be improved.
In particular, h = n − 1 in some cases.

Average Case: It seems that h ∈ Θ(log n) most of the time.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture Supplement 4 / 22

Motivation and Objective

Objective, and Difficulty

Objective:

Prove that the height of a binary search tree really is logarithmic in
its size, “most of the time.”

Difficulty:

This — or any other “average case analysis” — requires an
assumption about how frequently each binary search tree (of a given
size) occurs.

If our assumption is inaccurate then so is our analysis!

Mike Jacobson (University of Calgary) Computer Science 331 Lecture Supplement 5 / 22

Motivation and Objective

Concepts from Probability Theory

These will also be useful for the analysis of operations on hash tables and
the QuickSort algorithm, later in the course.

Sample Space: Set S of events that we are interested in. We will be
interested in situations where S is a finite set.

Probability Distribution: Function Pr : S → R such that

0 ≤ Pr(s) ≤ 1 for all s ∈ S and
∑
s∈S

Pr(s) = 1.

Random Variable: A real valued function of S . That is, a function
X : S → R.

Expected Value of a Random Variable: The expected value of a
random variable X is

E[X] =
∑
s∈S

Pr(s) · X (s).

Mike Jacobson (University of Calgary) Computer Science 331 Lecture Supplement 6 / 22

Distribution of Binary Search Trees

Useful Property of Shape

Problem: There are infinitely many binary search trees of a given size!

Consider the following binary search trees, each obtained by inserting four
elements into an empty tree.

4

1

3

2

Insertion Order: 1, 4, 3, 2

b

z

k

f

Insertion Order: b, z, k, f

Mike Jacobson (University of Calgary) Computer Science 331 Lecture Supplement 7 / 22

Distribution of Binary Search Trees

Useful Property of Shape (cont.)

If

T1 is generated by inserting a sequence of values x1, x2, . . . , xn into an
initially empty tree, and

T2 is generated by inserting a sequence of values y1, y2, . . . , yn into an
initially empty tree, and

for all i , j such that 1 ≤ i , j ≤ n,

xi ≤ xj if and only if yi ≤ yj

then T1 and T2 have the same shape — and the same height.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture Supplement 8 / 22

Distribution of Binary Search Trees

Assumption for Analysis

Conclusion: It is sufficient to consider the relative order of the inserted
keys when considering the height of a binary search tree.

Condition and Assumption for Analysis:

Condition: We will consider binary search trees of size n, produced
by inserting 1, 2, . . . , n into an empty tree in some order

Fact: There are 1× 2× · · · × n = n! possible relative orders of these
values

Assumption: We will assume that each of these relative orders is
equally likely.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture Supplement 9 / 22

Distribution of Binary Search Trees

Ideas from Probability Theory, Applied

Making This Formal:

When considering binary search trees of size n we will use a sample
space Sn of size n! — whose elements correspond to the n! relative
orderings of the inserted keys

According to the assumptions that have been stated we will be using
the uniform distribution in our analysis:

Pr(s) =
1

|Sn|
=

1

n!
for all s ∈ Sn

Mike Jacobson (University of Calgary) Computer Science 331 Lecture Supplement 10 / 22

Distribution of Binary Search Trees

Possible Relative Orders and Trees When n = 3

Insertion order appears above each tree.

T1: 1, 2, 3

1

2

3

T2: 1, 3, 2

1

2

3

T3: 2, 1, 3

31

2

T4: 2, 3, 1

31

2

T5: 3, 1, 2

2

3

1

T6: 3, 2, 1

2

1

3

Note: Tree shapes do not all occur with the same probability (under our
assumption).

Mike Jacobson (University of Calgary) Computer Science 331 Lecture Supplement 11 / 22

Exponential-Height Definition

Exponential-Height

If a binary search tree has height h, its exponential-height is 2h.

Heights and Exponential Heights of Previous Trees

i 1 2 3 4 5 6

height(Ti) 2 2 1 1 2 2
exp-height(Ti) 4 4 2 2 4 4

Average Exponential Height if n = 3 (Written as Yn):

E(exp-height) = Y3 =
1

6
(4 + 4 + 2 + 2 + 4 + 4) =

10

3

Goal: determine an upper bound on Yn, derive bound on avg. height

Mike Jacobson (University of Calgary) Computer Science 331 Lecture Supplement 12 / 22

Exponential-Height Upper Bound on Average Exponential Height

Trees with Root i

Suppose i is an integer between 1 and n.

One Way To Choose a Relative Ordering Starting with i :

Begin with i as the first thing to list

Pick one of the (n − 1)! relative orderings uniformly and
independently. Use this to determine the ordering for the other values
that should be listed after i

Mike Jacobson (University of Calgary) Computer Science 331 Lecture Supplement 13 / 22

Exponential-Height Upper Bound on Average Exponential Height

Trees with Root i

Another Way To Choose a Relative Ordering Starting with i :

Begin with i as the first thing to list

Choose one of the
(n−1

i−1

)
subsets of the remaining positions of

size i − 1, from the n − 1 positions that are left after this — the
integers between 1 and i − 1 will be placed here

Choose one of the (i − 1)! relative orderings for the integers less
than i . Insert the values 1, 2, . . . , i − 1 in the positions chosen in the
previous step using this ordering

Choose one of the (n − i)! relative orderings for the integers
between i − 1 and n. Insert the values i + 1, i + 2, . . . , n in the
positions that are left using this ordering.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture Supplement 14 / 22

Exponential-Height Upper Bound on Average Exponential Height

Trees with Root i

Crucial Observation: Each of these methods produces exactly the same
set of relative orderings, and every ordering that starts with i is listed
exactly once, in each case.

The corresponding trees are as follows:

Ri−1 Rn−i

i

Ri−1 : BST with i − 1 nodes 1, 2, . . . , i − 1

all (i − 1)! relative orders equally likely

Rn−i : BST with n − i nodes i + 1, i + 2, . . . , n

all (n − i)! relative orders equally likely

Mike Jacobson (University of Calgary) Computer Science 331 Lecture Supplement 15 / 22

Exponential-Height Upper Bound on Average Exponential Height

Exponential Height with Root i

Bounds on height and exponential height:

If a tree T has a left subtree with height hL and a right subtree with
height hR , then height of T is 1 + max(hL, hR)

If a tree T has a left subtree with exp-height HL and a right subtree
with exp-height HR , then the exp-height of T is

2 ·max(HL,HR) ≤ 2 · (HL + HR) .

Consequence: The average exponential-height of a binary search tree with
n nodes (1, 2, . . . , n) and root i is

Yn,i = 2 ·max(Yi−1,Yn−i) ≤ 2 · (Yi−1 + Yn−i)

Relationship holds for i = 1 and i = n if we “define” Y0 to be 0.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture Supplement 16 / 22

Exponential-Height Upper Bound on Average Exponential Height

Recurrence for Yn

Since every binary search tree with size one has height zero,

Y1 = 20 = 1 .

A binary search tree with n nodes 1, 2, . . . , n has root i with likelihood 1/n
(under our assumption). Thus

Yn =
1

n

n∑
i=1

Yn,i

≤ 2

n

n∑
i=1

(Yn−i + Yi−1)

=
4

n

n−1∑
i=0

Yi .

Mike Jacobson (University of Calgary) Computer Science 331 Lecture Supplement 17 / 22

Exponential-Height Upper Bound on Average Exponential Height

Bounding Yn Using the Recurrence

It is possible to use mathematical induction to show that

4

n

n−1∑
i=0

(
i + 3

3

)
=

4

n

(
n + 3

4

)
=

(
n + 3

3

)

where the binomial coefficient

(
n

k

)
=

n!

k!(n − k)!
.

It is also easily checked that

Y1 = 1 =
1

4

(
1 + 3

3

)
.

These can be used with the previous inequality to prove that

Yn ≤
1

4

(
n + 3

3

)
=

(n + 3)(n + 2)(n + 1)

24

for every integer n ≥ 1.
Mike Jacobson (University of Calgary) Computer Science 331 Lecture Supplement 18 / 22

Average Height Relating Height and Exponential Height

Useful Property of f (x) = 2x

Consider the function f (x) = 2x :

0

5

10

15

20

25

0 1 2 3 4 5

2**x

This function is convex: If α ≥ 0, β ≥ 0, and α + β = 1 then

f (αx1 + βx2) ≤ αf (x1) + βf (x2) .

Mike Jacobson (University of Calgary) Computer Science 331 Lecture Supplement 19 / 22

Average Height Relating Height and Exponential Height

Useful Property of f (x) = 2x (cont.)

Theorem 1 (Jensen’s Inequality)

For every integer m ≥ 1 and positive values x1, x2, . . . , xm,

f
(

1
m (x1 + x2 + · · ·+ xm)

)
≤ 1

m
(f (x1) + f (x2) + · · ·+ f (xm))

if the function f is convex.

Can be proved by induction on m.

Because 2x is convex, Jensen’s Inequality is applicable

Mike Jacobson (University of Calgary) Computer Science 331 Lecture Supplement 20 / 22

Average Height Relating Height and Exponential Height

Application of Property

Let Xn be the average height of a binary search tree with size n (under our
assumption). Then

Xn = 1
m (h1 + h2 + · · ·+ hm)

where m = n! and hi = height(Ti).

Consequence of Previous Inequality:

2Xn ≤ 1
m

(
2h1 + 2h2 + · · ·+ 2hm

)
= Yn .

Note that this implies
Xn ≤ log2 Yn .

Mike Jacobson (University of Calgary) Computer Science 331 Lecture Supplement 21 / 22

Average Height Relating Height and Exponential Height

Simplification of Bound

Corollaries: Under Our Assumption about Construction of Trees

1 Average height of a binary search tree of size n is

Xn ≤ log2 Yn ≤ log2

(
1
4

(n+3
3

))
,

so that Xn ≤ log2 n3 = 3 log2 n for sufficiently large n.

2 If c is a positive integer, n is sufficiently large, and T is a randomly
constructed BST with size n, then the probability that

height(T) ≥ 3c log2 n

is less than 1
c .

Mike Jacobson (University of Calgary) Computer Science 331 Lecture Supplement 22 / 22

	Motivation and Objective
	Distribution of Binary Search Trees
	Exponential-Height
	Definition
	Upper Bound on Average Exponential Height

	Average Height
	Relating Height and Exponential Height

