
Computer Science 331
Introduction to Testing of Programs

Mike Jacobson

Department of Computer Science
University of Calgary

Lectures #5-6

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #5-6 1 / 29

Outline

1 Definitions

2 Principles

3 Stages and Types of Testing
Stages of Testing
Types of Tests

4 Implementation and Evaluation

5 Debugging

6 References

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #5-6 2 / 29

Definitions

What is Testing?

Testing:

is the process of examining or running a program in order to find
errors

provides some evidence that software meets its specifications

A Test Plan (or “Testing Strategy”). . .

is a systematic approach to testing software

includes

deciding how software will be tested
deciding when tests will occur
deciding who will do the testing
deciding what test data will be used — and what the expected output
should be for each input

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #5-6 3 / 29

Definitions

Well-Designed Test Plans

Four main characteristics of well-designed test plans:

systematic, not haphazard (carefully thought-out)

well-documented (other people must be able to follow what was
tested and why)

repeatable (other people must be able to repeat tests and obtain the
same results)

done throughout development process (not only when the code is
finished)

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #5-6 4 / 29



Definitions

What is Defensive Programming?

Defensive Programming. . .

is a style of programming intended to ensure that software continues
to function (or, at least, does not cause harm) in spite of
unforeseeable use of the software

includes the use of code that detects unexpected or invalid input data
values — one way of “preparing for testing” as you write your code

See

http://en.wikipedia.org/wiki/Defensive_programming

for more information about defensive programming.

One advantage of developing a test plan early is that it makes defensive
programming easier.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #5-6 5 / 29

Definitions

What is Debugging?

Debugging is a methodical process of finding and removing defects in a
program.

General process:

Recognize that a bug exists (eg. ideally, via testing)

Isolate the source of the bug

Identify the cause of the bug

Determine a fix for the bug

Apply the fix and test it

A Common Error in Debugging:

Attempting “quick fixes” without taking the time to really understand
the problem

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #5-6 6 / 29

Principles

Is This the Objective of Testing?

Assumming that we are testing complex software including an extremely
large number of lines of code

Q: Do we test in order to prove that a program is correct?

A: No!

Explanation:

Passing a test only shows that software works correctly on one
particular input — it does not tell us why it does so or establish that
software works correctly on other inputs, too

There are almost always too many possible inputs for all inputs to be
considered during testing

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #5-6 7 / 29

Principles

More About the Objective of Testing

Objective of Testing:

We test in order to prove that a program is incorrect!

Explanation:

It is extremely unlikely that long and complex software is free of errors

It is generally cheaper and easier to correct an error if it is detected
early in software development

Adversarial mindset (goal is to try to make the program fail) improves
chances of locating errors

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #5-6 8 / 29

http://en.wikipedia.org/wiki/Defensive_programming


Principles

Who Should Test Your Software?

It is frequently a good idea to have someone else test the software you
have designed and implemented (if possible!).

Explanation:

We all have “blind spots:” Frequently, other people can more easily
see problems with our work that we don’t notice ourselves

It is easy (and human) for us to be overly “protective” of our own
work — we’d like to think it is perfect! This is not helpful, considering
that “the goal of testing is to prove that your software is incorrect”

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #5-6 9 / 29

Principles

A Limitation of Testing

You cannot use testing to improve software quality, ie,

readability

complexity

maintainability

efficiency

Q: When do we try to achieve these desirable properties?

A: Design phase

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #5-6 10 / 29

Principles

Why Prove Correctness and Test?

We need to prove correctness (or, at least, know about a proof of
correctness) because...

you can’t “test in” quality or use testing to repair a method based on
an incorrect algorithm — or debug code effectively unless you know
what it is supposed to do

We need to test because...

proofs of correctness tend to be “sketched” instead of developed in
detail, or skipped altogether, if correctness seems “obvious”

sometimes the proofs are faulty... and they tend to rely on idealistic
and unrealistic assumptions (e.g.: arithmetic is exact); testing
provides a “reality check”

a variety of errors can be introduced during the coding phase, even if
you are starting with an algorithm that really is “correct.”

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #5-6 11 / 29

Principles

Principles of Testing

Remember what kind of software we are testing (large, complex)!

Summary:

A test succeeds if it finds an error.

It is (almost always) impossible to test completely.

Development of a test plan can — and should — begin early on in
software development.

Ideally, you should not test your own program.

Testing can be effective in detecting and removing (some) errors from
well-designed software. It is generally not effective if used to improve
low-quality software.
If you find lots of errors, there are probably lots more!

Testing takes time and hard work but is worth it!

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #5-6 12 / 29



Stages and Types of Testing Stages of Testing

Unit Testing

During Unit Testing . . .

each “module” (class or function) is tested individually.

goal is to show that each module meets its specifications

ignores interaction between modules

This is the first stage of software testing

later stages consider groups of modules, and are simpler if we can be
confident that each module works correctly by itself

Well-written unit tests serve as important documentation

describes the expected behaviour of the module on a variety of inputs
(ideally including both “valid” and “invalid” inputs)

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #5-6 13 / 29

Stages and Types of Testing Stages of Testing

Integration Testing

Integration Testing . . .

is performed after unit testing.

Individual modules (that separately seem to be acceptable) are
combined to form and test progressively larger subsystems.

Multiple methods of an object might be tested in combination as part
of this process.

Overall idea — “building block” approach

gradually add and test new modules to a tested base

after testing the integration of a new module, it is added to the
tested base and the process is repeated with a new module, until all
have been included

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #5-6 14 / 29

Stages and Types of Testing Stages of Testing

Regression Testing

Regression Testing:

If an error is found and corrected then testing of the affected modules
and subsystems should be repeated, to be sure no new errors were
introduced!

This is one reason why it is important to document tests — you may
need to use them more than once!

Note: bugs can also be reintroduced via:

poor revision control practices (eg. when two people work on the
same code)

inadequate documentation of testing (so that, eg., bug #1 gets
reintroduced when recoding to eliminate bug #3)

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #5-6 15 / 29

Stages and Types of Testing Stages of Testing

Validation and System Testing

Validation (Acceptance) Testing: involve users to ensure that
specifications are met

System Testing: testing the integration of multiple software systems

These stages of testing are beyond the scope of CPSC 331.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #5-6 16 / 29



Stages and Types of Testing Types of Tests

Static Testing

Static Testing (structured walkthrough):

involves examination of source code without execution.

often first stage of unit testing

is a “reality-check” on code before proceeding to more detailed or
complicated testing

Two types:

Desk checking: read through code, look for errors

Hand Executions: trace code execution on small inputs with known
outputs by hand

Support Tools:

pencil, paper, time, patience, . . .

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #5-6 17 / 29

Stages and Types of Testing Types of Tests

Dynamic Testing

Dynamic Testing:

tests the behaviour of a module or program during execution.

Two types:

Black Box Testing (also called Functional Testing)

White Box Testing (also called Structural Testing)

Both black box and white box testing are useful for all phases of testing

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #5-6 18 / 29

Stages and Types of Testing Types of Tests

Black Box Testing

Black Box Testing . . .

includes tests designed using only the problem specification (not the
code)

tests both valid and invalid input

tests typical cases and boundary conditions (special, rarely-occurring
cases)

is useful for finding

incorrect or missing functions,
interface errors (involving functions),
interface errors for data structures or external data bases,
initialization and termination errors.

is generally used in later testing states, but certainly can and should
be used during unit testing too.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #5-6 19 / 29

Stages and Types of Testing Types of Tests

Example

Consider an object’s method with the following signature:

public void removeMe(Object[] array);

and with

Pre-Condition: input array is not null

Post-Condition: input has been modified by a removal of the first
instance of this, closing the gap and setting the last entry of the
input to null, if this was found as an array entry; otherwise, the
input is unchanged and a NoSuchElementException is thrown

Exceptions:
NoSuchElementException

NullPointerException

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #5-6 20 / 29



Stages and Types of Testing Types of Tests

Example Test Cases

Example test case inputs for x.removeMe():

Input Exp. Output Purpose

null NullPointerException invalid input
[] NoSuchElementException boundary
[x] [null] boundary

[null] NoSuchElementException boundary
[y,a,x,b,z] [y,a,b,z,null] typical

Other boundary cases: x at the beginning, at the end

Other typical cases: x not in the array, occurs multiple times

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #5-6 21 / 29

Stages and Types of Testing Types of Tests

White Box Testing

Includes tests designed using the internal workings of a module (including
source code).

goal is to test every line of code and every execution path

Tests typically try to ensure that:

every statement in code is executed in one or more tests

each “if” and “else” branch of every conditional statement is tested

each loop is iterated zero, one, several, and as many times as possible
(if these situations are feasible)

each exit condition causing a loop or function to terminate is executed

all exception handling is tested

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #5-6 22 / 29

Stages and Types of Testing Types of Tests

Why White Box Testing is Useful

Use white box testing to test paths not covered by black box tests:

parts of code (unit testing)

paths/interfaces between units (integration testing)

interactions between systems (system testing)

Two reasons why this is useful (may be more!):

1 typos can occur anywhere, including rarely-executed code (not always
syntax errors!)

2 logic errors are more common on seldomly-executed paths

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #5-6 23 / 29

Implementation and Evaluation

Important Note About Test Design

Tests must be designed completely before tests are carried out.

In particular, a test’s expected results must be determined and
documented, so that they are available for comparison with the values that
are actually generated when a test is carried out.

The design and executation of tests can begin before coding and be
carried out during and after coding:

Black box tests can be designed using specifications of requirements
before coding begins.

Unit tests can be executed once individual modules are completed
(and before others have).

Integration tests can be carried out gradually, while coding continues,
as well.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #5-6 24 / 29



Implementation and Evaluation

Additional Code for Unit and Integration Testing

Stub: piece of code that simulates the activity of a missing component
(that is called by whatever you are testing)

could be simple as something that echoes the input it receives and
prompts for, and returns, appropriate data to the module being tested

could be as complex as an alternate (perhaps, resource-inefficient)
fully functional implementation of another part of the system

Driver: piece of code that emulates a calling function (supplying test data
to whatever you are testing and reporting test results)

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #5-6 25 / 29

Implementation and Evaluation

Test Harness

Test Harness: combination of a software test engine and a test data
repository

automates testings (running tests and monitoring results)

since it will often be necessary to repeat tests the overhead associated
with the use of this is generally worthwhile!

Note: You will be using a test harness (including the test engine JUnit)
in this course.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #5-6 26 / 29

Implementation and Evaluation

Write Your Code to Make Testing Easier

This is part of “defensive programming”

Document your code appropriately!

Include preconditions and postconditions for methods, including in
javadoc comments for all public methods
Include assertions describing expected program state at critical code
segments

Two helpful mechanisms provided by Java:

Exceptions
Assertions

Information about these mechanisms is available on the course web
site.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #5-6 27 / 29

Debugging

Advice for Debugging

Recommended Steps:

Reproduce the error (what inputs and execution environments cause
the error?)

Simplify the error (use the simplest possible input that causes the
error when debugging)

Locate the error (divide and conquer — isolate class, then function,
code block, ...)

Know what the program should do (compare against what the
program does)

Look at all details (keep an open mind!)

Make sure you understand the bug before you “fix” it (no quick-fixes
to make the particular input work)

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #5-6 28 / 29



References

Further Reading

Wikipedia has an extensive series of helpful articles on software testing as
well as debugging.

(Formerly!) Sun’s documentation on programming with assertions in Java
including the assert class: http://download.oracle.com/javase/6/

docs/technotes/guides/language/assert.html

Data Structures: Abstraction and Design Using Java (Koffman and
Wolfgang) discusses testing and JUnit in Section 2.11 and Appendix D.

Will see more in tutorials.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #5-6 29 / 29

http://download.oracle.com/javase/6/docs/technotes/guides/language/assert.html
http://download.oracle.com/javase/6/docs/technotes/guides/language/assert.html

	Definitions
	Principles
	Stages and Types of Testing
	Stages of Testing
	Types of Tests

	Implementation and Evaluation
	Debugging
	References

