## Outline

# Computer Science 331 <br> Merge Sort 

Mike Jacobson
Department of Computer Science
University of Calgary
Lecture \#25

## Introduction

Merge Sort is is an asymptotically faster algorithm than the sorting algorithms we have seen so far.

- It can be used to sort an array of size $n$ using $\Theta\left(n \log _{2} n\right)$ operations in the worst case.

Presented here: A version that takes an input array $A$ and produces another sorted array $B$ (containing the entries of $A$, rearranged)

A solution to the "Merging Problem" (presented next) is a subroutine that is used to do much of the work.

Introduction
(2) Merging and MergeSort

- Merge
- MergeSort
(3) Analysis
- MergeSortReference

Calling Sequence: void merge(int [] $A_{1}$, int [] $A_{2}$, int [] $B$ )

## Precondition:

- $A_{1}$ is a sorted array of length $n_{1}$ (positive integer) such that

$$
A_{1}[h] \leq A_{1}[h+1] \quad \text { for } 0 \leq h \leq n_{1}-2
$$

- $A_{2}$ is a sorted array of length $n_{2}$ (positive integer) such that

$$
A_{2}[h] \leq A_{2}[h+1] \quad \text { for } 0 \leq h \leq n_{2}-2
$$

- Entries of $A_{1}$ and $A_{2}$ are integers (more generally, objects from the same ordered class)


## Postcondition:

- $B$ is a sorted array of length $n_{1}+n_{2}$, so that

$$
B[h] \leq B[h+1] \quad \text { for } 0 \leq h \leq n_{1}+n_{2}-2
$$

- Entries of $B$ are the entries of $A_{1}$ together with the entries of $A_{2}$, reordered but otherwise unchanged
- $A_{1}$ and $A_{2}$ have not been modified

Maintain indices into each array (each initially pointing to the leftmost element)

## repeat

- Compare the current elements of each array
- Append the smaller entry onto the "end" of $B$, advancing the index for the array from which this entry was taken
until one of the input arrays has been exhausted
Append the rest of the other input array onto the end of $B$
Pseudocode Merging and MergeSort Merge


## Pseudocode, Continued

```
void merge(int [] A A, int [] A2,int [] B)
    n}=l=length(\mp@subsup{A}{1}{});\mp@subsup{n}{2}{}=l=l\mp@code{mth}(\mp@subsup{A}{2}{}
    Declare B to be an array of length n}\mp@subsup{n}{1}{}+\mp@subsup{n}{2}{
    i
    while (i}<<\mp@subsup{n}{1}{})\mathrm{ and (i2< n
        if }\mp@subsup{A}{1}{}[\mp@subsup{i}{1}{}]\leq\mp@subsup{A}{2}{}[\mp@subsup{i}{2}{}]\mathrm{ then
            B[j]=A}\mp@subsup{A}{1}{}[\mp@subsup{i}{1}{}];\mp@subsup{i}{1}{}=\mp@subsup{i}{1}{}+
        else
            B[j]=A2[i2]; i i = i i2 +1
        end if
        j=j+1
    end while
```

\{Copy remainder of $A_{1}$ (if any) $\}$
while $i_{1}<n_{1}$ do
$B[j]=A_{1}\left[i_{1}\right] ; i_{1}=i_{1}+1 ; j=j+1$
end while
\{Otherwise copy remainder of $A_{2}$ \}
while $i_{2}<n_{2}$ do
$B[j]=A_{2}\left[i_{2}\right] ; i_{2}=i_{2}+1 ; j=j+1$
end while

## Merge Sort: Idea for an Algorithm



B

Note: Running time is $\Theta\left(n_{1}+n_{2}\right)$, where the input arrays have size $n_{1}$ and $n_{2}$

## Pseudocode

```
void mergeSort(int [] A, int [] B)
```



```
\(n=\) A.length
```

$n=$ A.length
if $n==1$ then
if $n==1$ then
$B[0]=A[0]$
$B[0]=A[0]$
else
$n_{1}=\lceil n / 2\rceil$
$n_{2}=n-n_{1}\left\{\right.$ so that $\left.n_{2}=\lfloor n / 2\rfloor\right\}$
Set $A_{1}$ to be $A[0], \ldots, A\left[n_{1}-1\right]\left\{\right.$ length $\left.n_{1}\right\}$
Set $A_{2}$ to be $A\left[n_{1}\right], \ldots, A[n-1]\left\{\right.$ length $\left.n_{2}\right\}$
mergeSort $\left(A_{1}, B_{1}\right)$
mergeSort $\left(A_{2}, B_{2}\right)$
$\operatorname{merge}\left(B_{1}, B_{2}, B\right)$
end if
$B[0]=A[0]$

```
    \(B[0]=A[0]\)
```

Suppose we:
(1) Split an input array into two roughly equally-sized pieces.
(2) Recursively sort each piece.
(3) Merge the two sorted pieces.

This sorts the originally given array.
Note: this algorithm design strategy is known as divide-and-conquer:

- divide the original problem (sorting an array) into smaller subproblems (sorting smaller arrays)
- solve the smaller subproblems recursively
- combine the solutions to the smaller subproblems (the sorted subarrays) to obtain a solution to the original problem (merging the sorted arrays)


## Theorem 1

If mergeSort is run on an input array $A$ of size $n \geq 1$, then the algorithm eventually halts, producing the desired sorted array as output.

Prove by (strong) induction on $n$ (assuming that merge is correct!):

## Base Case: $n=1$

- if $n=1$, array consists of one element (array is sorted trivially)
- algorithm returns $B$ containing a copy of the single element in the array (terminates with correct output)

Let $T(n)$ be the number of steps used by this algorithm when given an input array of length $n$, in the worst case.

We can see the following by inspection of the code:

$$
T(n) \leq \begin{cases}c_{0} & \text { if } n=1 \\ T(\lceil n / 2\rceil)+T(\lfloor n / 2\rfloor)+c_{1} n & \text { if } n \geq 2\end{cases}
$$

for some constants $c_{0}>0$ and $c_{1}>0$.

## Useful Relation:

- For any integer $n:\lceil n / 2\rceil+\lfloor n / 2\rfloor=n$.

Inductive hypothesis:

- assume the algorithm is correct for input arrays of size $k<n$

Let $A$ be an array of length $n \geq 2$. Prove that $B$ is sorted copy of $A$.

- $A_{1}$ contains first $n_{1}$ elements of $A$
- $A_{2}$ contains remaining $n_{2}$ elements of $A$
- $n_{1}=\lceil n / 2\rceil<n$ and $n_{2}=\lfloor n / 2\rfloor<n$, so inductive hypothesis implies that $B_{1}$ is $A_{1}$ sorted and $B_{2}$ is $A_{2}$ sorted
- merge computes $B$ containing all elements of $A$ sorted (assuming that merge is correct)
- hence, algorithm is partially correct by induction.

Recurrence Substitution for $n \geq 2$ :

$$
\begin{aligned}
T(n) & \leq 2 T(n / 2)+c_{1} n \\
& \leq 2\left(2 T\left(n / 2^{2}\right)+c_{1} n / 2\right)+c_{1} n \\
& =2^{2} T\left(n / 2^{2}\right)+2 c_{1} n \\
& \leq \cdots \\
& \leq 2^{k} T\left(\frac{n}{2^{k}}\right)+k c_{1} n
\end{aligned}
$$

Termination: $\frac{n}{2^{k}}=1 \Longrightarrow k=\log _{2} n$

## Further Observations

It can be shown (by consideration of particular inputs) that the worst-case running time of this algorithm is also in $\Omega\left(n \log _{2} n\right)$. It is therefore in $\Theta\left(n \log _{2} n\right)$.

- This is preferable to the classical sorting algorithms, for sufficiently large inputs, if worst-case running time is critical.
- The classical algorithms are faster on sufficiently small inputs because they are simpler.

Alternative Approach: A "hybrid" algorithm:

- Use the recursive strategy given above when the input size is greater than or equal to some (carefully chosen) "threshold" value.
- Switch to a simpler, nonrecursive algorithm (that is faster on small inputs) as soon as the input size drops to below this "threshold" value.

