
Computer Science 331
Graph Search: Depth-First Search

Mike Jacobson

Department of Computer Science
University of Calgary

Lecture #32

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 1 / 21

Outline

1 Connected Components
Definition and Example
Computational Problems

2 Graph Search

3 Depth-First Search
Example
Correctness and Running Time
Iteration in Depth-First Order

4 References

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 2 / 21

Connected Components Definition and Example

Connected Components

Recall that a graph G = (V ,E) is a connected graph if there is a path
from u to v for every pair of vertices u, v ∈ V .

More generally, a connected component of a graph G is an induced
subgraph Ĝ = (V̂ , Ê) of G such that

Ĝ is a connected graph, and

Ĝ is “maximal:” It is not possible to add any more vertices or edges
of G to Ĝ in order to produce a larger subgraph of G that is still
connected

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 3 / 21

Connected Components Definition and Example

Connected Components: An Example

Suppose G is the following graph

9

8

7
0

1

2

3

4

5

6
10

G has three connected components with vertex sets {0, 1, 2, 3, 4, 5, 6},
{7, 8, 9}, and {10}.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 4 / 21

Connected Components Computational Problems

Computational Problems

Given an undirected graph G = (V ,E),

Decide whether G is connected (ie, whether it has only one connected
component, consisting of the entire graph)

Find (and list) each of the connected components of G

Given an undirected graph G = (V ,E) and a vertex s ∈ V ,

Find the connected component of G that contains s

Find a spanning tree for the connected component of G that
contains s

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 5 / 21

Graph Search

“Graph Search” Problems

Graph Search — or Graph Traversal — refers to problems in which we
wish to visit some, or all, of the vertices in a graph in a particular order.

Algorithms for graph search are important mainly because we need to use
them to solve other (more interesting) problems.

In the version of a “graph search” problem to be given next the output will
be a structure associated with a search — a spanning tree including the
edges that have been followed in order to reach all the nodes that can be
visited.

The primary application we will consider in these notes will be the
discovery of a connected component of a graph; other applications are
mentioned in suggested readings.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 6 / 21

Graph Search

“Graph Search:” Specification of Requirements

Precondition:

G = (V ,E) is an undirected graph and s ∈ V

Postcondition:

The value returned is (a representation of) a function
π : V → V ∪ {NIL}
The predecessor subgraph Gp = (Vp,Ep) corresponding to the
vertex s and the function π is a spanning tree for the connected
component of G that includes the vertex s

The graph G has not been changed

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 7 / 21

Depth-First Search

Depth-First Search

Algorithm to search a graph in depth-first order:

Given a graph G and a vertex s, the algorithm finds the depth-first
tree, that is, a tree with root s whose edges are chosen by searching
as deeply down a path as possible before “backtracking.”

Applications include:

finding the connected components of a graph

solving puzzles (including some mazes) that have only one solution

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 8 / 21

Depth-First Search

Problem and Idea to Overcome It

Problem: graphs can have cycles and we need to avoid following cycles
(resulting in infinite loops)

Solution: keep track of the nodes that have been visited already, so that
we don’t visit them again

Details:

initially all vertices are white

carry out the following steps, beginning with node s.

Colour a node grey when a search from the node begins:
recursively search from each white neighbour (reachable by following
an edge in the “forward” direction)
end the search by colouring the node black.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 9 / 21

Depth-First Search

Typical Search Pattern

Pattern Near Beginning of Search:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 10 / 21

Depth-First Search

Typical Search Pattern

Pattern Farther Along in Search:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 11 / 21

Depth-First Search

Data and Pseudocode

The following information is maintained for each u ∈ V :

colour [u]: Colour of u

π[u]: Parent of u in tree being constructed

DFS(G = (V ,E), s)

{Initialization — all nodes initially white (undiscovered)}
for each vertex u ∈ V do
colour [u] = white
π[u] = NIL

end for
{Visit all vertices reachable from s}
DFS-Visit(s)
return π

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 12 / 21

Depth-First Search

Pseudocode, Continued

DFS-Visit(u)

colour [u] = grey {u is discovered, but not all neighbours}
for each v ∈ Adj [u] do
if colour [v] == white then
π[v] = u {record parent of newly-discovered vertex}
DFS-Visit(v) {visit each undiscovered neighbour recursively}

end if
end for
colour [u] = black {u finished (all children discovered)}

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 13 / 21

Depth-First Search Example

Example

a b c

d e f

g h i

a b c d e f g h i
π NIL a b e f c d g h

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 14 / 21

Depth-First Search Correctness and Running Time

Behaviour of DFS-Visit

Let u ∈ V .

If DFS-Visit is ever called with input u then colour [u] = white
immediately before this function is called with this input, and
colour [u] = black on termination, if this function terminates.

The following notation will be useful when discussing properties of this
algorithm.

Consider the colour function just before DFS-Visit is called with
input u. Let

Vu = {v ∈ V | colour[v] = white},
Gu = (Vu,Eu) be the induced subgraph of G corresponding to the
subset Vu.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 15 / 21

Depth-First Search Correctness and Running Time

Behaviour of DFS-Visit

Additional Useful Notation:

Consider the function π immediately after this call to DFS-Visit
terminates (if it terminates at all).

Let πu : Vu → Vu ∪ {NIL} such that, for a node v ∈ Vu,

πu(v) =

{
π(v) if v 6= u,

NIL if v = u.

Let Gp,u = (Vp,u,Ep,u) be the predecessor subgraph of Gu

corresponding to the function πu and the vertex u.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 16 / 21

Depth-First Search Correctness and Running Time

Behaviour of DFS-Visit

Theorem 1

Suppose that this execution of DFS-Visit terminates. Then

Gp,u is a depth-first tree for the graph Gu and the vertex u.

The graph G has not been changed by this execution of DFS-Visit.

If v ∈ Vu then colour[v] = black if v ∈ Vp,u, and colour[v] = white
otherwise

If v ∈ V but v /∈ Vu then neither colour[v] nor π[v] have been
changed by this execution of DFS-Visit.

π[u] has not been changed by this execution of DFS-Visit.

Method of proof.

Induction on |Vu|.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 17 / 21

Depth-First Search Correctness and Running Time

Partial Correctness of DFS

Theorem 2

If DFS is executed with an input graph G and vertex s ∈ G then either the
post-condition of the “Search” problem is satisfied on termination (with
the spanning tree corresponding to the output having been produced in a
“depth-first” manner) or the algorithm does not terminate at all.

Method of Proof.

Notice that this follows by inspection of the code, using the result about
DFS-Visit that has just been established.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 18 / 21

Depth-First Search Correctness and Running Time

Termination and Running Time

Theorem 3

Suppose G = (V ,E) is a directed or undirected graph, and suppose DFS
is run on G and a vertex v ∈ S . Then the algorithm terminates after
Θ(|V | + |E |) operations.

Sketch of Proof.

DFS-Visit is called exactly once for each u ∈ V

only called if a vertex is white
vertex u is coloured grey when DFS-Visit(u) is executed, and never
coloured white again.

Total cost of DFS-Visit, minus recursive calls, is linear in 1 + deg u∑
u∈V

(deg u + 1) = 2|E | + |V |

Thus, total running time is Θ(|V | + |E |).

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 19 / 21

Depth-First Search Iteration in Depth-First Order

Iteration in Depth-First Order

Some applications require that the vertices in a graph that are reachable
from a vertex s be visited in a “depth-first” order.

One such ordering, called “discovery order” or “preordering,” can be
produced by modifying our algorithm as follows:

Delete references to the array π (this is no longer needed)

Visit a node as soon as it is coloured grey

The worst-case cost is in Θ(|V | + |E |) once again

Another useful ordering, called “finish order” or “postordering,” is
obtained by visiting each node when its colour is changed to black. The
algorithm could also be changed to produce this ordering without
significantly changing its worst-case running time.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 20 / 21

References

References

Introduction to Algorithms, Section 22.3: More details about the version
of the algorithm presented here.

Data Structures: Abstraction and Design Using Java, Chapter 10.4

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 21 / 21

	Connected Components
	Definition and Example
	Computational Problems

	Graph Search
	Depth-First Search
	Example
	Correctness and Running Time
	Iteration in Depth-First Order

	References

