## Computer Science 418 <br> Product Ciphers, Block Ciphers, DES

Mike Jacobson
Department of Computer Science
University of Calgary
Week 4Product CiphersBlock CiphersThe Data Encryption Standard

- History of DES
- Description of DES
- Multiple DES Encryption
Product Ciphers $\quad$ Product Ciphers

Shannon also introduced the idea of product ciphers (multiple encryption):

## Definition 1 (Product cipher)

The product of two ciphers is the result of applying one cipher followed by the other.

AKA superencipherment and various other names.

Product Ciphers
Properties of Product Ciphers

If different ciphers are used in a product cipher, ciphertexts of one cipher need to have the correct format to be plaintexts for the next cipher to be applied.

- This is composition of encryption maps.

Applying a product cipher potentially increases security. E.g. $n$-fold encryption with one cipher and $n$ keys potentially corresponds to a cipher that has $n$ times longer keys.

Of course it also results in a loss of speed by a factor of $n$, but this might be worth it for added security.

## Confusion and Diffusion

Be careful with this reasoning!

## Note 1

The product of two substitution ciphers is a substitution cipher. The product of two transposition ciphers is a transposition cipher.

Such ciphers are closed under encryption, so multiple encryption under different keys provides no extra security:
E.g. double encryption $C=E_{K_{1}}\left(E_{K_{2}}(M)\right)=E_{K_{3}}(M)$ for a third key $K_{3}$

- ADFGX/ADFGVX Ciphers (employed by the Germans in WW I).
- Hayhanen Cipher - Hayanan was a Russian spy caught in New York in the 1950's. The FBI couldn't break it!


## Example 4

IBM's Lucifer system, uses permutations (transpositions) on large blocks for the mixing transformation, and substitution on small blocks for confusion.

Feistel originally wanted to call the product cipher "Dataseal". IBM instead shortened the term demonstration cipher to "Demon." Later, it was changed to Lucifer, because it retained the "evil atmosphere" of Demon, and contained the word cipher.

Shannon suggested applying two simple ciphers with a fixed mixing transformation (transposition) in between to:

- diffuse language redundancy into long term statistics, and to
- confuse the cryptanalyst by making relation between redundancy of the ciphertext $C$ and the description of the key $K$ very complex.


## Definition 2 (Confusion)

Make the relationship between the key and ciphertext as complex as possible (accomplished by applying substitutions or $S$-boxes).

## Definition 3 (Diffusion)

Dissipate the statistical properties of the plaintext across the ciphertext (accomplished by applying applying transpositions or $P$-boxes).

## Lucifer: P-boxes and S-boxes

Since Lucifer was set up in hardware, they called the chips which did the permutation "P-boxes" and those that did the substitution "S-boxes."


## Lucifer: Complete Cipher

The Lucifer system simply consisted of a number of $P$ and $S$ boxes in alternation.


## Example 6

Lucifer has good diffusion and error propagation. The thicker lines in the graphic indicate ' 1 ' bits. The ' 1 ' input bit dissipates over the entire ciphertext.

Aso, if the first ' 1 ' bit is changed to a ' 0 ', then half the bits in the output are affected.

Note: All modern symmetric key ciphers in use are product ciphers.

## Error Propagation

Lucifer demonstrates graphically not only the difffusion properties of Lucifer, but also the idea of error propagation.

## Definition 5 (Error Propagation)

The degree to which a change in the input leads to changes in the output.

Good error propagation is a desirable property of a cryptosystem (a user can easily tell if a message has been modified).

Not good for decryption though (one error in the process should still mostly decrypt correctly).

## Block Ciphers

All modern ciphers in use are block ciphers (although not necessarily used as such - we'll talk about modes of operation of block ciphers later).

## Definition 7 (Block cipher)

Encrypts plaintext blocks of some fixed length to ciphertext blocks of some fixed (possibly different) length.

Usually, a message $M$ will be larger than the plaintext block length, and must hence be divided into a series of sequential message blocks $M_{1}, M_{2}, \ldots, M_{n}$ of the desired length.

- A block cipher operates on these blocks one at a time.


## Example 8

The shift cipher is a block cipher where the blocks consists of one character (i.e. 8 bits on 32-bit architecture, 16 bits on 64-bit architecture)

Two main block ciphers in use today:
(1) DES (obsolete, so now used in triple encipherment as 3DES)
c AES
Mike Jacobson (University of Calgary) Computer Science 418 Week 4 13/32
The Data Encryption Standard History of DES
DES Documents

- Original DES publication: FIPS 46 (January 15, 1977)
- Second DES publication: FIPS 46-2 (December 30, 1993)
- Current DES publication: FIPS 46-3 (October 25, 1999)
- NIST: National Institute of Standards and Technology (formerly National Bureau of Standards (NBS))
- FIPS: Federal Information Processing Register

Everything about NIST's cryptographic standards, recommendations, and guidance can be found at the NIST Cryptographic Toolkit website http://csrc.nist.gov/CryptoToolkit.

- Extremely useful website for the practicing cryptographer.
- There is a link on the "external links" page on the course website.


## History of DES

- DES was developed by IBM around 1972.
- NBS made solicitations to IBM in 1973/1974 concerning the use of this as a public standard, in response to corporate needs for securing information.
- IBM and the National Security Agency (NSA) secretly evaluated DES for security.
- DES was approved in 1978, and it is still in use, although no longer endorsed.
- The Advanced Encryption Standard (AES), approved in October 2000, has now replaced it.

$$
D E S_{\text {key }}(M)=I P^{-1}\left(S_{16}\left(S_{15}\left(\ldots\left(S_{2}\left(S_{1}(I P(M))\right)\right) \ldots\right)\right)\right)
$$

- DES is a block cipher that encrypts 64 -bit plaintext blocks to 64 -bit
ciphertext blocks using using 64 -bit keys.
- Note that 8 of the key bits are parity bits, resulting in 56 actual bits of the key.
- So $\mathcal{M}=\mathcal{C}=\{0,1\}^{64}$ and $\mathcal{K}=\{0,1,\}^{56}$.
(1) The 64 plaintext bits are permuted in a fixed order (transposition cipher).
(2) The block is divided into two 32 -bit words $L_{0}$ and $R_{0}$.
(0) The block undergoes 16 substitution "rounds." In each round, one word is transformed using XOR and a substitution function, after which the two words are swapped.
(9) In the last round, the two words are not swapped.
(0) The original permutation is reversed.


In round $i$ :

- The right word $R_{i-1}$ is combined with the $i$ th subkey $K_{i}$ via the function $f$.
- The output of $f$ is XORed with $L_{i-1}$ to form $R_{i}$.
- The next left word $L_{i}$ is the previous right word $\left(L_{i}=R_{i-1}\right)$.
$f$ accepts as input $R_{i}$ (32 bits) and the ith round subkey $K_{i}$ ( 48 bits). The subkey generation is described below. The function $f$ works as follows:
(1) $R_{i}$ is expanded to the 48 bit $R_{i}^{\prime}$ via the expansion function $E$, which simply repeats some of the bits of $R_{i}$ in generating $R_{i}^{\prime}$ (see the FIPS publication for the specification of $E$ ).
(2) $R_{i}^{\prime}$ is XORed with $K_{i}$ (both are 48 bits long).
(3) $R_{i}^{\prime} \oplus K_{i}$ is broken into 86 -bit words. Each of these words is replaced by a 4 -bit word according to the 8 (different) $S$-boxes $S_{1}, S_{2}, \ldots, S_{8}$. The result of applying the S -boxes is a 32 -bit string.
(1) The 32-bit string is permuted according to the fixed permutation $P$ (see the FIPS publication).

The Data Encryption Standard Description of DES

## Diagram of $f$



## Decryption



Let $K_{n}=K S(n$, key $)\left(K_{n}\right.$ is the $n$th subkey, $K S$ is the key schedule)
Note:

The Data Encryption Standard Description of DES

## Decryption, cont.

Suppose $\operatorname{DES}_{\text {key }}(M)=C$. Denote by

$$
K_{i}^{\prime}=K S(17-i, \text { key }), \quad i=1,2, \ldots, 16
$$

(the key schedule in reverse order). Now run the DES device on $C$, using $K_{i}^{\prime}$ instead of $K_{i}$. We have $I P(C)=\left(R_{16}, L_{16}\right)$, and thus

$$
\begin{array}{lll}
L_{0}^{\prime}=R_{16} & R_{0}^{\prime} & =L_{16} \\
L_{1}^{\prime}=R_{0}^{\prime}=L_{16} & R_{1}^{\prime} & =L_{0}^{\prime} \oplus f\left(R_{0}^{\prime}, K_{1}^{\prime}\right) \\
=R_{15} & & =R_{16} \oplus f\left(L_{16}, K_{16}\right) \\
& & =R_{16} \oplus f\left(R_{15}, K_{16}\right) \\
& & =R_{16} \oplus R_{16} \oplus L_{15} \\
& & =L_{15}
\end{array}
$$

$$
\begin{aligned}
L_{i+1} & =R_{i} \\
R_{i+1} & =L_{i} \oplus f\left(R_{i}, K_{i+1}\right) \quad i=0,1, \ldots, 15 \\
L_{i} & =R_{i+1} \oplus f\left(R_{i}, K_{i+1}\right) \\
C & =I P^{-1}\left(R_{16}, L_{16}\right) \\
I P(C) & =\left(R_{16}, L_{16}\right)
\end{aligned}
$$

( $I P^{-1}$ is the inverse of the initial permutation function)

The Data Encryption Standard Description of DES

## Decryption, cont.

In fact, by continuing this argument we get

$$
L_{i}^{\prime}=R_{16-i} \quad R_{i}^{\prime}=L_{16-i}
$$

and hence

$$
I P^{-1}\left(R_{16}^{\prime}, L_{16}^{\prime}\right)=I P^{-1}\left(L_{0}, R_{0}\right)=M
$$

Decryption of DES is simply running the DES algorithm on $C$ with the reverse key schedule.

## Note 2

The invertibility of DES is independent of the function $f$. Regardless of what function is used for $f$, decryption works exactly as described above.

- Works largely because the individual parts of DES are involutions functions that are their own inverses $(g(g(x))=x)$

DES was a great cipher at the time:

- highly efficient (for the time)
- lends itself very well to hardware implementation
- same encryption and decryption algorithm (only one chip needed for encryption and decryption)
- withstood all known attacks


## Multiple DES Encryption

What about multiple DES encryptions? Does this foil exhaustive attacks due to longer key sizes?

Campbell and Wiener (1992) proved that DES is not closed, so multiple DES encryptions/decryptions could potentially provide additional security.

- size of the group generated by all the keys (i.e. the number of distinct encryptions obtained by applying repeated DES encryptions) has been shown to have size at least $10^{2499} \approx 2^{8302}$. (Estimated number of atoms in the universe: $2^{240}$.)

Later, we will show that on double encryption is essentially no more secure than single encryption (but twice as slow).

What about three DES encryption? 3DES (triple DES) is still used.

The problem is that for today's computers, the key space of DES is simply too small to foil exhaustive search ( $2^{56} \approx 10^{17}$ keys).

- In 1998, the Electronic Frontier Foundation built a DES Cracker for $\$ 250,000$ which finds a single DES key in 56 hours (tests 8800 keys $/ \mu$-sec).
- A combination of the DES cracker and 100,000 PCs on the internet has found a DES key in 22.25 hours (tested 245,000 keys $/ \mu$-sec).


## Triple DES

Use three successive DES operations: $\quad C=D E S_{K_{1}}\left(D E S_{K_{2}}^{-1}\left(D E S_{K_{3}}(M)\right)\right)$ - See NIST Special Publication SP 800-67.

## Advantages:

- Same as single key if $K_{2}=K_{1}$ or $K_{2}=K_{3}$.
- Exhaustive search has complexity $2^{112}$ via the meet-in-the-middle attack (see next week), but with a 168-bit key and a factor of 3 in speed.
- Can use $K_{1}=K_{3}$ with no loss of security.
- No other known practical attacks.

The main disadvantage is that 3-DES is three times slower than single key DES while only doubling the key size.

