
Computer Science 418
Hash Functions and Message Authentication Codes

Mike Jacobson

Department of Computer Science
University of Calgary

Week 7

Mike Jacobson (University of Calgary) Computer Science 418 Week 7 1 / 41

Outline

1 Hash Functions
SHA-1
SHA-3

2 Attacks on Hash Functions
Brute-force Attacks
Cryptanalytic Attacks

3 Message Authentication Codes (MACs)
CMAC
HMAC

4 Attacks on MACs

Mike Jacobson (University of Calgary) Computer Science 418 Week 7 2 / 41

Hash Functions

Hash Function

Often referred to as the “work horse” of cryptography — they are
ubiquitous in crypto.

Definition 1 (Hash function)

A function H : {0, 1}∗ → {0, 1}m (m ∈ N) that is easy to compute. An
image x = H(M) is referred to as a message digest or a digital fingerprint
or a checksum or simply a hash.

Hash functions thus satisfy two properties:

Compression: H maps an input M of arbitrary bit length to an output
of fixed bit length.

Ease of computation: for any input M, H(M) is easy to compute.

Mike Jacobson (University of Calgary) Computer Science 418 Week 7 3 / 41

Hash Functions

Cryptographic Requirements

Desirable properties for hash functions in the context of cryptography:

Pre-image resistance: given any hash value x , it is computationally
infeasible to find any input M for which H(M) = x .

Second pre-image resistance or Weak collision resistance: given any
M, it is computationally infeasible to find M ′ 6= M with
H(M) = H(M ′).

Collision resistance or strong collision resistance: it is computationally
infeasible to find two distinct inputs M and M ′ such that
H(M) = H(M ′).

Note that collision resistance is the strongest of these three requirements.
In other words: collision resistance ⇒ weak collision resistance ⇒
pre-image resistance

Mike Jacobson (University of Calgary) Computer Science 418 Week 7 4 / 41



Hash Functions

Uses of Cryptographically-Secure Hash Functions

Definition 2

A hash function is cryptographic(ally secure) if it is collision resistant.

Some example applications:

In digital signatures to prevent impersonation (sign H(M) instead of
M — later)

Data integrity without secrecy (e.g. downloading large files, compare
checksum before and after download)

Data integrity with secrecy (see below)

Commitment (can verify H(M) to see if M was committed to)

Randomness (e.g. one-time passwords, OAEP — later)

Mike Jacobson (University of Calgary) Computer Science 418 Week 7 5 / 41

Hash Functions

Eg. Data Integrity with Secrecy

Using hashing plus encryption:

Sender sends C = EK (M‖x) with x = H(M)

Receiver decrypts C to obtain M ′, x ′ and checks that H(M ′) = x ′.

Idea:

Adversary cannon manipulate ciphertext blocks in such a way that
H(M ′) = x ′.

May be possible if H is not cryptographically secure (eg. WEP:
combination of stream cipher and checksum).

Mike Jacobson (University of Calgary) Computer Science 418 Week 7 6 / 41

Hash Functions SHA-1

SHA-1

Secure Hash Algorithm 1: developed by NIST in 1993 (FIPS 180 and FIPS
180-1).

Iterated round hash function with hash length 160 bits

Can now find SHA-1 collisions in 260 attempts.

Longer versions still certified for use (up to 512 bits)

Mike Jacobson (University of Calgary) Computer Science 418 Week 7 7 / 41

Hash Functions SHA-1

SHA-1: Description

1 Pad message so its length is 448 mod 512 (always pad with a single 1
bit followed by 0s — 1 indicates beginning of padding)

2 Append a 64-bit unsigned integer (most significant byte first). This
integer represents the length of the original message before padding.

3 Initialize a 5-word (160-bit) buffer CV0 = (A, B, C , D, E ) to

A = 67452301, B = EFCDAB89, C = 98BADCFE,

D = 10325476, E = C3D2E1F0 .

4 Process message in 16-word (512-bit) chunks:

Message block Yq is processed with current buffer CVq via four rounds.
CVq+1 is produced by adding wordwise (modulo 232) CVq to the
output of the fourth round.

5 Hash value is the final buffer value CVL

Mike Jacobson (University of Calgary) Computer Science 418 Week 7 8 / 41



Hash Functions SHA-1

SHA-1 Processing of a Single Block

Mike Jacobson (University of Calgary) Computer Science 418 Week 7 9 / 41

Hash Functions SHA-1

SHA-1 Steps

Each of the 80 steps is of the form

(A, B, C , D, E )← (E + f (t, B, C , D) + S5(A) + Wt + Kt , A, S30(B), C , D)

where

t — step number

Sk — circular left shift by k bits

addition is modulo 232

Mike Jacobson (University of Calgary) Computer Science 418 Week 7 10 / 41

Hash Functions SHA-1

Elementary SHA-1 Operation

Mike Jacobson (University of Calgary) Computer Science 418 Week 7 11 / 41

Hash Functions SHA-1

SHA-1: Compression Function

The compression function f (t, B, C , D) is defined as

f (t, B, C , D) =


(B ∧ C ) ∨ (B ∧ D) if 0 ≤ t ≤ 19

B ⊕ C ⊕ D if 20 ≤ t ≤ 39

(B ∧ C ) ∨ (B ∧ D) ∨ (C ∧ D) if 40 ≤ t ≤ 59

B ⊕ C ⊕ D if 60 ≤ t ≤ 79

The words Wt , derived from the current message block Yq, are defined as:

Wt =

{
Word t of Yq if 0 ≤ t ≤ 15

S1(Wt−16 ⊕Wt−14 ⊕Wt−8 ⊕Wt−3) otherwise

Mike Jacobson (University of Calgary) Computer Science 418 Week 7 12 / 41



Hash Functions SHA-1

SHA-1: Compression Function, cont.

The four additive constants Kt are defined as:

Kt =


5A827999 = b230

√
2c if 0 ≤ t ≤ 19

6ED9EBA1 = b230
√

3c if 20 ≤ t ≤ 39

8F1BBCDC = b230
√

5c if 40 ≤ t ≤ 59

CA62C1D6 = b230
√

10c if 60 ≤ t ≤ 79

Mike Jacobson (University of Calgary) Computer Science 418 Week 7 13 / 41

Hash Functions SHA-1

Attacks on SHA-1

Finding collisions:

Wang, Yin, Yu (Feb. 2005) — 269 hash ops

Wang, Yao, Yao (Aug. 2005) — 263 hash ops

Stephens (2012) — 260 hash ops

Significantly less than theoretical maximum (280) — therefore, considered
vulnerable.

Mike Jacobson (University of Calgary) Computer Science 418 Week 7 14 / 41

Hash Functions SHA-1

Other Hash Functions

MD5 — 128-bit hash length, developed by Rivest.

Essentially broken (Wang et. al., 2004). Can find MD5 collisions on a
laptop in 8 hours or less (Klima, 2005).

Revised hash standard SHA-2 consisting of SHA-256, SHA-384, SHA-512

modifications of SHA-1 to provide 128, 192, and 256 bits of security
for compatibility with AES (see FIPS 180-4).

current recommendation: use one of these in place of SHA-1.

Charles, Goren, Lauter (2009) — hash function based on expander graphs

provable security: finding collisions reduces to computing computing
isogenies between supersingular elliptic curves

See NIST’s hash function page in the Cryptographic Tool Kit for more.

Mike Jacobson (University of Calgary) Computer Science 418 Week 7 15 / 41

Hash Functions SHA-3

SHA-3: Keccak

After the 2005 attack on SHA-1, NIST initiated a competition for new
hash algorithms, similar to the AES competition; see
//csrc.nist.gov/groups/ST/hash/. The SHA-3 winner was
announced on October 2, 2012:

Keccak (pronounced “ketchuk”), invented by

Guido Bertoni (Italy) of STMicroelectronics,

Joan Daemen (Belgium) of STMicroelectronics (one of the
AES/Rijndahl creators!),

Michaël Peeters (Belgium) of NXP Semiconductors,

Gilles Van Assche (Belgium) of STMicroelectronics.

Mike Jacobson (University of Calgary) Computer Science 418 Week 7 16 / 41



Hash Functions SHA-3

Keccak: Overview

Uses Sponge construction whose permutation function has the following
properties:

iterated round function,

operates on 1600-bit state; other state widths range from 25 to 800,

uses only bitwise XOR, AND, NOT (no table look-ups, arithmetic or
data-dependent rotations)

What is a sponge design?

hash function: arbitrary input length, fixed output length

stream cipher: fixed input length, arbitrary output length

sponge function: arbitrary input length, variable user-supplied output
length

Mike Jacobson (University of Calgary) Computer Science 418 Week 7 17 / 41

Attacks on Hash Functions

Attacks on Hash Functions

Objectives of adversaries vs. hash functions:

Find a pre-image: given any hash, create a corresponding message
with that hash.

Find a weak collision: given a message, modify it to another message
with the same hash.

Find a collision: find two messages with the same hash.

Mike Jacobson (University of Calgary) Computer Science 418 Week 7 18 / 41

Attacks on Hash Functions Brute-force Attacks

Brute-force Attacks

Like block ciphers, brute force should be the best attack.

For an m-bit hash function:

Pre-images and weak collisions: 2m attempts on average

Strong collisions: 2m/2 attempts on average due to the birthday
paradox — probability of having at least one duplicate out of k
random numbers between 1 and n is of order

√
n (see any of our

textbooks).

Recommended sizes: m = 160, 256, 394, 512 (provide 80, 128, 192, and
256 bits of security)

Mike Jacobson (University of Calgary) Computer Science 418 Week 7 19 / 41

Attacks on Hash Functions Brute-force Attacks

Birthday Attack

Birthday attack on signature schemes with hash functions (more later):

Attacker generates 2m/2 variations of a valid message (easy to do by
adding/removing white space, replacing synonyms, etc...).

Attacker generates 2m/2 variations of a desired fraudulent message.

The two sets of messages are compared to find a pair with the same
hash.

Attacker has the victim sign the hash of the valid message — the
signature will also be valid for the fraudulent message.

Mike Jacobson (University of Calgary) Computer Science 418 Week 7 20 / 41



Attacks on Hash Functions Cryptanalytic Attacks

Cryptanalytic Attacks

Iterated hash functions are composed of rounds (eg. SHA-1)

Repeated use of compression function f — takes n-bit input from the
previous step (chaining variable) and a b-bit block from M; produces
n-bit output.

Input to H : message M consisting of L b-bit blocks Y0, . . . , YL−1

(padded to suitable length).

CV0 = IV = initial n-bit value (e.g. all zeros).

CVi = f (CVi−1, Yi−1), 1 ≤ i ≤ L

H(M) = CVL

Iterated hash functions can be set up in such a way so that if f is
collision-resistant, so is H (Merkle 1989 and Damgard 1989).

Mike Jacobson (University of Calgary) Computer Science 418 Week 7 21 / 41

Attacks on Hash Functions Cryptanalytic Attacks

Idea for Attacking

Exploit the structure of the hash function (similar to block ciphers):

Analytically attack the rounds of a hash function

Focus on collisions in function f .

Almost all widely-used hash function have succumbed to this type of
attack (due to Wang et al).

Mike Jacobson (University of Calgary) Computer Science 418 Week 7 22 / 41

Message Authentication Codes (MACs)

Message Authentication Codes (MACs)

A small, fixed-size, key-dependent block that is appended to a message to
check data integrity.

Similar to a hash function, but keyed.

Definition 3 (Message authentication code (MAC))

A single-parameter family {CK}K∈K of many-to-one functions
CK :M→ {0, 1}n (n ∈ N) satisfying:

Ease of computation: For any M ∈M and K ∈ K, CK (M) is easy to
compute.

Computation resistance: for any K ∈ K, given zero or more
message/MAC pairs (Mi , CK (Mi )), it is computationally infeasible to
compute any new message/MAC pair (M, CK (M)), M 6= Mi for all i .

Mike Jacobson (University of Calgary) Computer Science 418 Week 7 23 / 41

Message Authentication Codes (MACs)

Data Integrity using MACs

Computation-resistance implies data integrity (without secrecy):

Sender and receiver share a secret key K

Sender computes MAC = CK (M) and sends (M, MAC )
(unencrypted!)

Receiver computes MAC ′ = CK (M) and checks if MAC ′ = MAC . If
they match and CK is computation resistant, the integrity of M is
preserved.

Similar to encryption, but (a) no secrecy, (b) MACs need not be reversible,
(c) there are many messages with the same MAC.

Mike Jacobson (University of Calgary) Computer Science 418 Week 7 24 / 41



Message Authentication Codes (MACs)

Sender Authentication using MACs

MACs also provide sender authentication in a similar manner to encryption

only sender or receiver, who knows K could generate the MAC.

Note: Non-repudiation of data origin not provided

either party possessing K can generate MACs.

Mike Jacobson (University of Calgary) Computer Science 418 Week 7 25 / 41

Message Authentication Codes (MACs)

More on MACs

Note 1

MAC should depend equally on all bits of the message. Given valid
message/MAC pair, it should still be hard to find another valid pair even if
only one bit of the message is modified.

Note 2

Apply first MAC, then encryption to message with MAC appended, rather
than vice versa

C = EK1(M‖MACK2(M)) — if encryption is defeated, message
integrity is still preserved.

(C‖MACK2(C )) with C = EK1(M) — preserves only integrity of
ciphertext which is useless if encryption is defeated

Mike Jacobson (University of Calgary) Computer Science 418 Week 7 26 / 41

Message Authentication Codes (MACs)

Why MACs?

Why use MACs (instead of encrypting message plus checksum/hash)?

Sometimes only integrity is needed (no secrecy).

Sometimes need integrity to persist longer than the encryption (eg.
archival use)

Mike Jacobson (University of Calgary) Computer Science 418 Week 7 27 / 41

Message Authentication Codes (MACs) CMAC

CMAC

A secure block cipher (satisfying additional statistical properties) can be
used to generate MACs. Two methods are:

1 CBC-MAC:

Encrypt the message (zero IV, last block padded with 0s) using CBC
mode.
The last cipher block (whose bits are dependent on all the key bits and
all message bits) is the MAC.

2 CFB-MAC: Same idea as CBC-MAC

A CBC-MAC using DES appears in both FIPS 113 and the ANSI X9.17
standard.

Mike Jacobson (University of Calgary) Computer Science 418 Week 7 28 / 41



Message Authentication Codes (MACs) CMAC

Problem with CBC-MAC

Problem: only secure if messages of one fixed length are processed
(Bellare, Killian, Rogaway 2000) — see Assignment 3.

Solution (CMAC):

Use three keys, one at each step of the chaining, two for the last
block (Black, Rogaway 2000).

Second two keys may be derived from the encryption key (Iwata,
Kurosawa 2003).

Mike Jacobson (University of Calgary) Computer Science 418 Week 7 29 / 41

Message Authentication Codes (MACs) CMAC

Properties of CMAC

Cipher-based Message Authentication Code (CMAC)

Specified for use with AES and 3DES in NIST Special Pub. 800-38B

Can be proven secure as long as the underlying block cipher’s output
is indistinguishable from a random permutation.

No known weaknesses.

Mike Jacobson (University of Calgary) Computer Science 418 Week 7 30 / 41

Message Authentication Codes (MACs) CMAC

Operation of CMAC

Message M is padded so its length is a multiple of the cipher’s block
length n (128 for AES, 64 for 3DES) by appending a 1 and as many 0s as
necessary, then divided into blocks M1, . . . , Mm.

Let K be the block cipher key. Two additional keys K1 and K2 are
computed as follows:

L = EK (0n)

K1 = L · x
K2 = L · x2 = K1 · x

where · denotes multiplication of polynomials with bit coefficients modulo
x64 + x4 + x3 + x + 1 or x128 + x7 + x2 + x + 1 (i.e., mult. in GF (2n)).

Mike Jacobson (University of Calgary) Computer Science 418 Week 7 31 / 41

Message Authentication Codes (MACs) CMAC

Operation of CMAC, cont.

To compute the MAC of message M, process blocks M1, . . . , Mm−1 using
CBC with IV = 0 :

C0 = 0n

Ci = EK (Mi ⊕ Ci−1) 1 ≤ i ≤ m − 1 .

Compute
Cm = EK (Mm ⊕ Cm−1 ⊕ Ki )

where i = 1 if M was not padded and i = 2 if M was padded.

MAC is the s leftmost (most significant) bits of Cm (s is determined by
the desired level of security).

Mike Jacobson (University of Calgary) Computer Science 418 Week 7 32 / 41



Message Authentication Codes (MACs) HMAC

HMAC

Basic idea: MAC = H(M‖K ) where H is a cryptographically secure hash
function and K is a secret key.

Advantage over CMAC: hash functions are faster than block ciphers.

Idea:

MAC = H(M‖K ) : insecure if H is iterated (see Assignment 3)

MAC = H(K‖M) : similar problem (see Assignment 3)

MAC = H(K1‖M‖K2) : better, but potentially also vulnerable

MAC = H(K1‖H(K2‖M)) : Bellare, Canetti, Krawczyk (CRYPTO
1996) — HMAC

Mike Jacobson (University of Calgary) Computer Science 418 Week 7 33 / 41

Message Authentication Codes (MACs) HMAC

Operation of HMAC

HMAC (FIPS 198):

HMACK (M) = H
(
(K+ ⊕ opad) ‖ H

(
(K+ ⊕ ipad) |M

))
Description (assume H operates on b-bit blocks, eg. for SHA-1, b = 512):

1 K+ = 0 . . . 0K (0-bits prepended so K+ has b bits)

2 Si = K+ ⊕ ipad, with ipad = (00110110)b/8

3 T = H(Si‖M) (note that f (IV , Si ), compression function of H
applied to Si , can be precomputed)

4 So = K+ ⊕ opad, with opad = (01011100)b/8

5 HMACK (M) = H(So‖T ) (note that f (IV , So) can be precomputed)

Mike Jacobson (University of Calgary) Computer Science 418 Week 7 34 / 41

Message Authentication Codes (MACs) HMAC

Diagram of HMAC

Mike Jacobson (University of Calgary) Computer Science 418 Week 7 35 / 41

Message Authentication Codes (MACs) HMAC

Properties of HMAC

K+ ⊕ ipad and K+ ⊕ opad — two pseudorandom keys generated from K .

XORing with ipad and opad each cause 1/2 of the bits of K to be
flipped.

Helps ensure that the Hamming distance between Si and So is fairly
high, maximizing the statistical independence of f (IV , Si ) and
f (IV , So).

Only three additional executions of the compression function of H
compared with only hashing M

only one if key-dependent precomputation is used as mentioned above

Mike Jacobson (University of Calgary) Computer Science 418 Week 7 36 / 41



Message Authentication Codes (MACs) HMAC

More Properties

Provable security, equivalent to one of:

computing an output of the compression function of H assuming the
IV is unknown,

finding collisions of the hash function assuming the IV is unknown.

Note that a birthday attack based on the second case is possible.

significantly more difficult than on a hash function

requires a MAC-generating oracle to compute valid message/MAC
pairs due to the fact that IV is secret

Mike Jacobson (University of Calgary) Computer Science 418 Week 7 37 / 41

Attacks on MACs

Attacks on MACs

Objectives of adversaries vs. MACs (without prior knowledge of K ):

Compute a new message/MAC pair (M, CK (M)) for some message
M 6= Mi , given one or more pairs (Mi , CK (Mi )).

Known-text, chosen-text, and adaptive-chosen-text variations are
possible.

Mike Jacobson (University of Calgary) Computer Science 418 Week 7 38 / 41

Attacks on MACs

MAC Space Attack

Assume n-bit MACs, m-bit keys.

Attack:

Pick a message, guess the MAC value (probability 2−n of being
correct)

Requires “black-box” MAC generator to verify guesses.

Expected number of attempts is 2n.

Mike Jacobson (University of Calgary) Computer Science 418 Week 7 39 / 41

Attacks on MACs

Key Space Attack

Assumes m > n (longer keys than MACs, reasonable). This is a KTA:

Given MAC1 = CK1(M1), compute MACi = CKi
(M1) for all possible

keys Ki (1 ≤ i ≤ 2m)

Expect 2m−n keys to produce a match (2m MACs produced, only 2n

possible MACs).

Repeat with (MAC2, M2), reducing the number of possible keys to
2m−2n. Iterate with (MACi , Mi ), i = 3, 4, . . .

Requirements:

dm/ne message/MAC pairs

dm/ne · 2m MAC computations, but these can be conducted off-line.

Mike Jacobson (University of Calgary) Computer Science 418 Week 7 40 / 41



Attacks on MACs

Summary

Brute-force attack requires effort min{
⌈

m
n

⌉
2m, 2n}.

As usual, this should be best possible.

Cryptanalytic attacks also possible:

For CMAC, one can try to attack the underlying block cipher.

For HMAC, one can try to attack the underlying hash function.

Mike Jacobson (University of Calgary) Computer Science 418 Week 7 41 / 41


	Hash Functions
	SHA-1
	SHA-3

	Attacks on Hash Functions
	Brute-force Attacks
	Cryptanalytic Attacks

	Message Authentication Codes (MACs)
	CMAC
	HMAC

	Attacks on MACs

