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Motivation

Key Agreement

Recall the key agreement problem:

Before deploying a conventional cryptosystem, how do Alice and Bob
agree on a common secret cryptographic key?

Solutions:

Secure channel (slow and expensive)

Key agreement protocol via a certain one-way function: next.
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One-Way Functions

One-Way Functions

Definition 1 (One-way function)

A function f that satisfies the following two properties:

1 Ease of Computation: f (x) is easy to evaluate for a given x .

2 Pre-image Resistance: Given y = f (x), it is computationally infeasible
to find x .

It is not known whether one way functions exist, but several that are
believed to be one-way are used in cryptography.
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One-Way Functions

Examples

Example 2

A pre-image resistant hash function is a one-way function.

Example 3

A secure cryptosystem (computationally infeasible to find the key) provides
a one-way function. Define C = f (x) = Ex(M), where M is a known piece
of plaintext and x is some key. Given M and C (KTA), it should infeasible
to find the key x .

We could also use f (x) = Ex(x).
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One-Way Functions

Application: Access Control

Secure login via one-way functions: Computer stores a table(
user-idi , f (Pi )

)
,

containing user id’s and images of passwords under a one-way function f
— safer than storing passwords in the clear.

When a user logs in, he submits his user id user-id and his password P.

The computer generates f (P) and checks if
(
user-id, f (P)

)
is an entry in

the password table.

If yes, access is granted, if no, access is denied.
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Number Theory Euler’s φ Function

Zm and Z∗m

Several candidate one-way functions come from number theory .

Define for m ∈ N:

Zm = {0, 1, . . . ,m − 1} set of integers modulo m

Z∗
m = {a ∈ Zm | gcd(a,m) = 1} set of integers between 1 and m

that are coprime to m.

Example 4

Z42 = {0, 1, . . . , 41} and Z∗
42 = {1, 5, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41}.
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Number Theory Euler’s φ Function

Euler’s φ Function

Definition 5 (Euler’s φ Function)

Let m be a positive integer. Euler’s phi function is defined via
φ(m) = |Z∗

m|.

Interpretation: φ(m) is the number of integers between 1 and m− 1 which
are coprime (no common divisors) to m.

Example 6

φ(42) = |Z∗
42| = {1, 5, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41}| = 12
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Number Theory Euler’s φ Function

φ(pn), p prime

Let p be a prime. Then

φ(p) = p − 1 = p0(p − 1)

φ(p2) = p2 − p = p1(p − 1)

φ(pn) = pn − pn−1 = pn−1(p − 1) .

What about composites with more than one prime factor?
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Number Theory Euler’s φ Function

Multiplicativity of φ(n)

Theorem 1

If gcd(m1,m2) = 1, then φ(m1m2) = φ(m1)φ(m2).

Proof.

Omitted (uses Chinese Remainder Theorem).
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Number Theory Euler’s φ Function

Computing φ(n)

Corollary 2

If the prime factorization of m is given by

m =
k∏

i=1

pαi
i , pi prime,

then

φ(m) =
k∏

i=1

φ(pαi
i ) =

k∏
i=1

pαi−1
i (pi − 1) .

Example 7

φ(42) = φ(2× 3× 7) = φ(2)φ(3)φ(7) = 1× 2× 6 = 12.

Mike Jacobson (University of Calgary) Computer Science 418 Week 8 11 / 37

Number Theory Euler’s φ Function

Euler’s and Fermat’s Theorems

Theorem 3 (Euler)

If gcd(a,m) = 1, then aφ(m) ≡ 1 (mod m).

Special case m = p prime:

Theorem 4 (Fermat)

If p is prime, and p - a, then ap−1 ≡ 1 (mod p).
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Number Theory Euler’s φ Function

Application: Probabilistic Primality Test

Fermat’s Theorem gives rise to a fast probabilistic primality test using
binary exponentiation:

If aN−1 ≡ 1 (mod N) for a few small primes a - N, then N is probably
prime (base a pseudoprime).

If aN−1 6≡ 1 (mod N) for any prime a - N, then N is composite.

Example 8

N = 15 : 11N−1 ≡ 1114 ≡ 1 (mod 15), but 1314 ≡ 4 (mod 15).
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Number Theory Euler’s φ Function

Why “probabilistic”?

Unfortunately, there are composite numbers (called Charmichael numbers)
for which aN−1 ≡ 1 (mod N) for all integers a.

Thus, this method cannot prove primality.

The smallest Carmichael number is 561. The next few are 1105, 1729,
2465, 2821, 6601, 8911.

Even worse: it has been proved that there are infinitely many
Carmichael numbers.

The good news is that they are very rare, so this test will work well
for most integers.
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Number Theory Primitive Roots

Primitive Roots

Recall that for any prime p :

Zp = {0, 1, 2, . . . , p − 1} is the set of integers modulo p;

Z∗
p = Zp \ {0} = {1, 2, . . . , p − 1}.

Fermat’s theorem asserts that ap−1 ≡ 1 (mod p) for any a ∈ Z∗
p. What

about smaller powers of a?

Definition 9 (Primitive Root)

For a prime p, a primitive root of p (generator of Z∗
p) is an element g ∈ Z∗

p

such that the smallest positive integer k with gk ≡ 1 (mod p) is p − 1.
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Number Theory Primitive Roots

Example

Generators yield the longest possible cycle of powers modulo p.

Example 10

Is a = 3 a primitive root of p = 7? By tabulating the powers of a mod p
we get

30 = 1, 31 = 3, 32 = 2, 33 = 6, 34 = 4, 35 = 5, 36 = 1 .

(Sequence repeats at exponent 6 by Fermat’s theorem.)

Since 6 is the smallest power of 3 yielding 1, 3 is a primitive root of 7.

5 is also a primitive root of 7.

There are no others (e.g. 23 = 1, so 2 is not a primitive root of 7).
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Number Theory Primitive Roots

Properties of Primitive Roots

If g is a primitive root and gcd(a, p) = 1, then g i ≡ a (mod p) for some i
with 0 ≤ i < p − 1. In other words, every non-zero integer is a power of a
primitive root of p. So

Z∗
p = {g 0, g 1, . . . , gp−2} .

Theorem 5

For any prime p, there are exactly φ(p − 1) primitive roots of p.

Example 11

For p = 7, there are φ(p − 1) = φ(6) = (3− 1)(2− 1) = 2 primitive roots.
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Number Theory Primitive Roots

Properties of Primitive Roots, cont.

It can be shown that for sufficiently large n,

φ(n) ≥ C
n

log log(n)
,

where C ≈ 1.7. For large n, φ(n) is not much smaller than n. So that’s a
lot of primitive roots!

Most primes p have at least one small primitive root, i.e. most of the time,
one of 2 or 3 or 5 or 7 is a primitive root of p.
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Number Theory Primitive Roots

Computing Primitive Roots

Suppose p is prime.

Select some g ∈ Z∗
p and compute g (p−1)/q (mod p) for each prime

divisor q of p − 1 (so this requires knowledge of the prime
factorization of p − 1).

If g (p−1)/q 6≡ 1 (mod p) for each q, then g is a primitive root of p.

Best choice of g : a small prime (try 2, 3, 5, 7, . . . ).
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Number Theory Primitive Roots

Example

Example 12

p = 19. Select g = 2. p − 1 = 18 = 2× 32. Then

2(19−1)/2 = 29 ≡ 18 6≡ 1 (mod 19)

2(19−1)/3 = 26 ≡ 7 6≡ 1 (mod 19) .

Thus, 2 is a primitive root of 19.

Mike Jacobson (University of Calgary) Computer Science 418 Week 8 20 / 37



Number Theory Discrete Logarithms

Discrete Logarithms

Let p be a prime and g a primitive root of p. Then for every y ∈ Z∗
p, there

exists a unique integer x with 0 ≤ x ≤ p − 2 such that

y ≡ g x (mod p) .

Definition 13 (Discrete Logarithm)

The integer x is the discrete logarithm (or index) of y (to base g).
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Number Theory Discrete Logarithms

Example

Example 14

If p is large (≈ 21024), then the function

f (x) ≡ g x (mod p), 0 < x < p − 1, 1 < f (x) < p

seems to be a one-way function, provided p − 1 has at least one large
prime factor. Computing x given f (x) and g is known as the discrete
logarithm problem (DLP).
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Number Theory Discrete Logarithms

DLP Record

Note 1

The fastest known algorithm for extracting discrete logs is the Number
Field Sieve which is a very complicated algorithm using extremely
sophisticated number theory.

The current NFS DL record is for the prime p = b10159πc+ 119849
(160 decimal digits), Kleinjung, February 2007.

You can learn more about DLP algorithms in PMAT 529.
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Diffie-Hellman Key Agreement

Diffie-Hellman Key Exchange: Idea

A and B wish to establish a common key for encryption over a public
channel in such a way that an eavesdropper cannot determine the key.

ALICE

ALICE

1

BOB

BOB

2
2

2

1

1

EAVESDROPPER

THE SECRET KEY IS: Two locks locked together. 
Eavesdropper gets two locked locks & cannot open them.

2

1

2

1

2

1

insecure

channel
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Diffie-Hellman Key Agreement

Diffie-Hellman Key Agreement Protocol

Diffie and Hellman (1976) — still used today.

A and B agree on

a large prime p,

a primitive root g of p.

These quantities can be public.
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Diffie-Hellman Key Agreement

Diffie-Hellman Description

Public
A Channel B

Select a, 1 < a < p randomly Select b, 1 < b < p randomly
ya ≡ ga (mod p) ya −→ ya

yb ←− yb yb ≡ gb (mod p)
K = ya

b K = yb
a

Note 2

• A and B get the same number K because
ya
b ≡ (gb)a ≡ gba ≡ (ga)b ≡ yb

a (mod p)

• Can use the low order 128 bits of H(K ) for an AES key, where H is a
cryptographically secure hash function.

Mike Jacobson (University of Calgary) Computer Science 418 Week 8 26 / 37

Diffie-Hellman Key Agreement Security of DH Protocol

Security of Diffie-Hellman

Adversary’s objective: find K .

Diffie-Hellman Problem (DHP): given p, g , ga, gb, find gab (modulo p).

equivalent to finding K .

Also recall: Discrete Logarithm Problem (DLP): given p, g , ga, find a.

If an adversary can solve an instance of the DLP, he can solve the
DHP.

It is unknown if there are ways of solving the DHP, i.e., attacking DH
key agreement, other than extracting discrete logs.
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Diffie-Hellman Key Agreement Security of DH Protocol

Parameter Choice

In order to make DLP attacks as difficult as possible, a popular choice for
p is a Sophie Germain prime (aka strong or safe prime), i.e. a prime of the
form p = 2q + 1 with q prime.

Why? Because p − 1 = 2q, and thus as as large a prime divisor as possible
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Diffie-Hellman Key Agreement Security of DH Protocol

Man-in-the-Middle Attack

Consider the following (active) attack:

Eve intercepts ga from Alice and gb from Bob.

She selects e, 1 < e < p and sends g e to both Alice and Bob.
Alice now thinks that g e is gb, and Bob thinks g e is g a.

Alice computes what she thinks is (gb)a, but in fact computes g ea.

Bob computes what he thinks is (ga)b, but in fact computes g eb.

Eve computes (ga)e (which is what Alice thinks is the key) and (gb)e

(which is what Bob thinks is the key).
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Diffie-Hellman Key Agreement Security of DH Protocol

Man-in-the-Middle Attack, consequence

If Alice sends a message encrypted with g ea to Bob:

Eve intercepts it, decrypts it with g ea, re-encrypts it with g eb and
sends it on to Bob.

Bob decrypts it unsuspectingly and in his perspective correctly using
g eb.

Similarly, Eve can read all traffic from Bob to Alice.
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Diffie-Hellman Key Agreement Security of DH Protocol

Issues

Solution: keys need to be entity-authenticated (i.e. verified as belonging
to the correct person).

This is done using digital signatures, which we’ll discuss later on.

Man-in-the-middle attack: example of can happen when adversarial
models are too weak

Basic (un-authenticated, or anonymous) DH is provably secure
against passive adversaries (can only eavedrop)

Easily defeated by active adversary

Be aware of cryptography textbooks that only focus on the mathematics
and ignore these issues!
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Diffie-Hellman Key Agreement The Power Algorithm (Binary Exponentiation)

Efficiency of Diffie-Hellman

How efficient is DH key agreement?

In other words, how fast is it to evaluate modular powers?

Goal: Efficiently evaluate an (mod m) given a, n,m.

One example: binary exponentiation

based on the binary expansion of n :

n = b02k + b12k−1 + · · ·+ bk−12 + bk

where b0 = 1, bi ∈ {0, 1}, 1 ≤ i ≤ k , k = blog2 nc.
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Diffie-Hellman Key Agreement The Power Algorithm (Binary Exponentiation)

Binary Exponentiation: Idea

Given b0, . . . , bk , we can evaluate n efficiently using Horner’s Method:

n = 2(. . . (2(2b0 + b1) + b2) · · ·+ bk−1) + bk .

Define s0 = b0, si+1 = 2si + bi+1 for 0 ≤ i ≤ k − 1. Then

s0 = b0

s1 = 2b0 + b1

s2 = 2(2b0 + b1) + b2 = 22b0 + 2b1 + b2

...

sk = n .

One can formally prove (using induction on i):

si =
i∑

j=0

bj2
i−j for 0 ≤ i ≤ k
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Diffie-Hellman Key Agreement The Power Algorithm (Binary Exponentiation)

Binary Exponentiation: Description

For 0 ≤ i ≤ k , define
ri ≡ asi (mod m) .

Then rk ≡ ask ≡ an (mod m) and we can compute rk iteratively as follows:

r0 ≡ as0 ≡ a (mod m)

r1 ≡ as1 ≡ a2b0+b1 ≡ (as0)2ab1 ≡ (r0)2ab1 (mod m)

...

ri+1 ≡ asi+1 ≡ a2si +bi+1 ≡ (asi )2abi+1 ≡ (ri )
2abi+1 (mod m) .
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Diffie-Hellman Key Agreement The Power Algorithm (Binary Exponentiation)

Binary Exponentiation: Algorithm

The actual algorithm:

1 Initialize r0 = a.

2 for 0 ≤ i ≤ k − 1 compute

ri+1 =

{
r 2
i mod m if bi+1 = 0 ,

r 2
i a mod m if bi+1 = 1 .
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Diffie-Hellman Key Agreement The Power Algorithm (Binary Exponentiation)

Binary Exponentiation: Analysis

What is the computational cost of this?

k modular squarings

h(n) modular multiplications by a, where h(n) is the Hamming weight
of n, i.e. the number of ‘1’s in the binary expansion of n.

Total cost: at most 2 log2(n) modular multiplications.

Also note that all intermediate operands are smaller than m2

Important that ri is reduced modulo m after every operation
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Diffie-Hellman Key Agreement The Power Algorithm (Binary Exponentiation)

Looking Ahead

Solutions to the key establishment problem:

1 Diffie-Hellman key agreement protocol
2 Public key cryptography — next!

also used for authentication — later!
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