Computer Science 418
 Public-Key Cryptography and RSA

Mike Jacobson

Department of Computer Science
University of Calgary
Week 9
Public-Key Cryptography

```
Idea of Public-Key Cryptography
```

Whitfield Diffe and Martin Hellman, "New Directions in Cryptography", 1976.

- Note that Diffie and Hellman did not describe a specific means of implementing a public-key cryptosystem.
- They merely described how one could be used to achieve security, authentication, (and indirectly, integrity and non-repudiation).

Also secretly discovered in 1970 as "non-secret encryption" by Clifford Cocks and James H. Ellis of CESG (Communications-Electronics Security Group, part of the the UK Government's Government Communications Headquarters(GCHQ))

- disclosed in 1987; see http://jya.com/ellisdoc.htm.

> Public-Key Cryptography

Public-Key Cryptosystem

Definition 2 (Public Key Cryptosystem (PKC))

A PKC consists of a plaintext space \mathcal{M}, a ciphertext space \mathcal{C}, a public key space \mathcal{K}, and encryption functions $E_{K_{1}}: \mathcal{M} \rightarrow \mathcal{C}$, indexed by public keys $K_{1} \in \mathcal{K}$, with the following properties:
(1) Every encryption function $E_{K_{1}}$ has a left inverse $D_{K_{2}}$, where K_{2} is the private key corresponding to the public key K_{1}.
(2) $E_{K_{1}}(M)$ and $D_{K_{2}}(C)$ are easy to compute when K_{1} and K_{2} are known.
(c) $D_{K_{2}}\left(E_{K_{1}}(M)\right)=M$ for all $M \in \mathcal{M}$.
(-) Given $K_{1}, E_{K_{1}}$, and $C=E_{K_{1}}(M)$, it is computationally infeasible to find M or K_{2}.

Properties 2, 3, 4 describe $E_{K_{1}}$ as a trapdoor one-way function.

Definition 1 (Trap-door one-way function)

A function f that satisfies the following properties:
(1) Ease of Computation: $f(x)$ is easy to compute for any x.
(2) Computation Resistance with Trap-door: Given $y=f(x)$ it is computationally infeasible to determine x unless certain special information used in the design of f is known.

- When this trap-door k is known, there exists a function g which is easy to compute such that $x=g(k, y)$.

Key to designing public-key cryptosystems: decryption key acts as a trap door for the encryption function.

Schematic of a Public-Key Cryptosystem

Unlike conventional cryptosystems, messages encrypted using public key cryptosystems contain sufficient information to uniquely determine the plaintext and the key (given enough ciphertext, resources etc)

- The entropy contained in these systems is zero.
- This is the exact opposite of a perfectly secret system like the one-time pad.

Security in a public key cryptosystem lies solely in the computational cost of computing the plaintext and/or private key from the ciphertext (computional security).

Linear Diophantine Equations

Solve the linear Diophantine equation

$$
a x+b y=1
$$

given $a, b \in \mathbb{Z}, b>0$, and $\operatorname{gcd}(a, b)=1$.

- If $\operatorname{gcd}(a, b) \neq 1$, there is no solution.
- In general, an equation of the form $a x+b y=c$ has a solution if and only if $\operatorname{gcd}(a, b)$ divides c.
- If $b<0$, use $-b$ and solve for $(x,-y)$.

Diophantine equations are named after Diophantus, a Greek mathematician who lived around 300-200 BCE.

Euclidean Algorithm

Repeated division with remainder.

Given $a, b \in \mathbb{Z}, b>0$, and $\operatorname{gcd}(a, b)=1$:

$$
\begin{array}{rlrl}
a & =b q_{0}+r_{0} & & q_{0}=\lfloor a / b\rfloor, 0<r_{0}<b \\
b & =r_{0} q_{1}+r_{1} & & q_{1}=\left\lfloor b / r_{0}\right\rfloor, 0<r_{1}<r_{0} \\
r_{0} & =r_{1} q_{2}+r_{2} & & q_{2}=\left\lfloor r_{0} / r_{1}\right\rfloor, 0<r_{2}<r_{1} \\
\vdots & & \\
r_{n-3} & =r_{n-2} q_{n-1}+r_{n-1} & & r_{n-1}=\operatorname{gcd}(a, b) \\
r_{n-2} & =r_{n-1} q_{n}+r_{n} & & r_{n}=0
\end{array}
$$

Termination

Notice that the sequence of remainders (the r_{i}) is strictly decreasing - thus, the sequence is finite (algorithm terminates).

Theorem 1 (Lamé, 1844)

$$
n<5 \log _{10} \min (a, b) .
$$

More exactly, Lamé's Theorem states

$$
n \leq \log _{\tau}(\min (a, b)+1)
$$

where $\tau=(1+\sqrt{5}) / 2$ is the golden ratio.

Extended Euclidean Algorithm

Modular Inverses

Let $A_{-2}=0, A_{-1}=1, B_{-2}=1, B_{-1}=0$ and

$$
A_{k}=q_{k} A_{k-1}+A_{k-2}, \quad B_{k}=q_{k} B_{k-1}+B_{k-2}
$$

for $k=0,1, \ldots$.
We have $A_{n}=a$ and $B_{n}=b$ (n from above), and

$$
A_{k} B_{k-1}-B_{k} A_{k-1}=(-1)^{k-1}
$$

Putting $k=n$ yields

$$
\begin{aligned}
A_{n} B_{n-1}-B_{n} A_{n-1} & =(-1)^{n-1} \\
a(-1)^{n-1} B_{n-1}+b(-1)^{n} A_{n-1} & =1 .
\end{aligned}
$$

Recall that $\mathbb{Z}_{m}^{*}=\left\{a \in \mathbb{Z}_{m} \mid \operatorname{gcd}(a, m)=1\right\}$ is the set of integers between 1 and m that are coprime to m.
\mathbb{Z}_{m}^{*} consists of exactly those integers that have modular inverses:

- for every $a \in \mathbb{Z}_{m}^{*}$, there exists $x \in \mathbb{Z}_{m}^{*}$ such that $a x \equiv 1(\bmod m)$.

Thus, a solution of $a x+b y=1$ is given by

$$
x=(-1)^{n-1} B_{n-1}, \quad y=(-1)^{n} A_{n-1} .
$$

Given $a \in \mathbb{Z}_{m}^{*}$, solve the linear congruence $a x \equiv 1(\bmod m)$ for $x \in \mathbb{Z}_{m}^{*}$.

- We want x such that

$$
m \mid a x-1 \Longrightarrow a x-1=y m \Longrightarrow a x-m y=1
$$

- Can be solved using the Extended Euclidean Algorithm.
- We only need to compute the B_{i} because we only need x, not y.

Example 3

For $a \equiv 95 x \equiv 1(\bmod 317)$, we obtain $x=\equiv-10(\bmod 317)$, so $x \equiv 307$ $(\bmod 317)$ is the modular inverse of 95.
RSA Setup

The designer
(1) Selects two distinct large primes p and q (each around $2^{1536} \approx 10^{463}$)
(2) Computes $n=p q$ and $\phi(n)=(p-1)(q-1)$.
(3) Selects a random integer $e \in \mathbb{Z}_{\phi(n)}^{*}$ (so $1<e<\phi(n)$ and $\operatorname{gcd}(e, \phi(n))=1)$.
(0) Solves the linear congruence

$$
d e \equiv 1 \quad(\bmod \phi(n))
$$

for $d \in \mathbb{Z}_{\phi(n)}^{*}$.
(0) Keeps d secret and makes n and e public:

- the public key is $K_{1}=\{e, n\}$
- the private key is $K_{2}=\{d\}$ (or $\{d, p, q\}$, discussed later).

Named after Ron Rivest, Adi Shamir, and Len Adleman, 1978.
Initially, NSA pressured these guys to keep their invention secret.
Both encryption and decryption are modular exponentiations (same modulus, different exponents):

- Encryption: $C \equiv M^{e}(\bmod n)$
- Decryption: $M \equiv C^{d}(\bmod n)$

RSA Encryption and Decryption

Encryption: Messages for the designer are integers in \mathbb{Z}_{n}^{*}

- if a message exceeds n, block it into less-than- n size blocks

To send M encrypted, compute and send

$$
C \equiv M^{e} \quad(\bmod n) \text { where } 0<C<n
$$

Decryption: To decrypt C, the designer computes

$$
M \equiv C^{d} \quad(\bmod n) \text { where } 0<M<n .
$$

Why this Works

What if $\operatorname{gcd}(M, n) \neq 1$?

We have

$$
C^{d} \equiv\left(M^{e}\right)^{d} \equiv M^{e d} \quad(\bmod n)
$$

Since d is chosen such that $e d \equiv 1(\bmod \phi(n))$ we have

$$
e d=k \phi(n)+1 \text { for some } k \in \mathbb{Z},
$$

and

$$
M^{e d} \equiv M^{k \phi(n)+1} \equiv M M^{k \phi(n)} \equiv M\left(M^{\phi(n)}\right)^{k} \quad(\bmod n)
$$

Euler's Theorem states that $a^{\phi(n)} \equiv 1(\bmod n)$, so we have

$$
C^{d} \equiv M\left(M^{\phi(n)}\right)^{k} \equiv M(1)^{k} \equiv M \quad(\bmod n)
$$

