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Public-Key Cryptography Public-Key Cryptography

Public-Key Cryptography |dea of Public-Key Cryptography

Whitfield Diffe and Martin Hellman, “New Directions in Cryptography”,
1976.

@ Note that Diffie and Hellman did not describe a specific means of

. ) . Every user has two keys
implementing a public-key cryptosystem.

_ ] ) @ encryption key is public (so everyone can encrypt messages)
@ They merely described how one could be used to achieve security,

authentication, (and indirectly, integrity and non-repudiation). ® decryption key is only known to the
Also secretly discovered in 1970 as “non-secret encryption” by Clifford Deducmg tth d(Iac]Eypt.ltc;In key from the encryption key should be
Cocks and James H. Ellis of CESG (Communications-Electronics Security cmputationally infeasible.
Group, part of the the UK Government's Government Communications
Headquarters(GCHQ))

@ disclosed in 1987; see http://jya.com/ellisdoc.htm.
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Diagram of a Public-Key Cryptosystem Trap-door One-Way Functions

Definition 1 (Trap-door one-way function)

secret cipher cipher secret A function f that satisfies the fO”OWing properties:
message text text message

encrypt decrypt © n 2
- " o] insocure o | — @ Ease of Computation: f(x) is easy to compute for any x.

beneath the 2 inslsew cpt | e @umm— finslsew ¢ . beneath the . . . . . .
vl n | naridl y oumremsran Weee it o cakresct. @ Computation Resistance with Trap-door: Given y = f(x) it is
computationally infeasible to determine x unless certain special

'y
| |
1
1
i [ | . . . . .
SENDER Publie key EAVESDROPPER | RECEIVER information used in the design of f is known.
S— 2 | 717 . . . . S
e i @)E o When this trap-door k is known, there exists a function g which is easy
| Wi to compute such that x = g(k, y).
private key ”
insecure channel AP"""‘ key Key to designing public-key cryptosystems: decryption key acts as a trap
key directory door for the encryption function.
Mike Jacobson (University of Calgary) Computer Science 418 Week 9 5 /22 Mike Jacobson (University of Calgary) Computer Science 418 Week 9 6 /22

Public-Key Cryptography Public-Key Cryptography

Public-Key Cryptosystem Schematic of a Public-Key Cryptosystem

Definition 2 (Public Key Cryptosystem (PKC))

COMMUNICATION CHANNEL

A PKC consists of a plaintext space M, a ciphertext space C, a public key M C=EuaM
F ; i . MESSAGE TRANSMITTER K1M) RECEIVER M
space /C, and encryption functions Ek, : M — C, indexed by public keys SOURCE ENCRYPTS M WHO DECRYPTS [~
K1 € K, with the following properties: TOEK (M) CUSING Dyp(©)
@ Every encryption function Eg, has a left inverse Dg,, where Kj is the EAVESDROPPER K,
private key corresponding to the public key Kj. (ev source]
@ Ex, (M) and Dk, (C) are easy to compute when Kj and K> are known. K,
Q Dx,(Ex,(M)) = M for all M € M.
Q Given Ki, Ek,, and C = Ek,(M), it is computationally infeasible to
find M or K.

In a public-key cryptosystem (PKC), it is not necessary for the key channel
to be secure.

Properties 2, 3, 4 describe Ek, as a trapdoor one-way function.

Mike Jacobson (University of Calgary) Computer Science 418 Week 9 7/ 22 Mike Jacobson (University of Calgary) Computer Science 418 Week 9 8 /22



Public-Key Cryptography Public-Key Cryptography

Properties of a PKC Hybrid Encryption

Unlike conventional cryptosystems, messages encrypted using public key

cryptosystems contain sufficient information to uniquely determine the All PKC's in use today are much slower (by a factor of 1000-1500 or so)
laintext and the key (given enough ciphertext, resources etc : )

P v (8 ghcip ) than conventional systems like AES, so they are generally not used for bulk

@ The entropy contained in these systems is zero. encryption. Most common uses:

@ This is the exact opposite of a perfectly secret system like the

: @ Encryption and transmission of keys for conventional cryptosystems
one-time pad.

(hybrid encryption)

e . , . _ @ Authentication and non-repudiation via digital signatures (later).
Security in a public key cryptosystem lies solely in the computational cost

of computing the plaintext and/or private key from the ciphertext
(computional security).
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RSA Motivation Linear Diophantine Equations

Solve the linear Diophantine equation

ax+by=1
In 1978, Ron Rivest, Adi Shamir and Len Adleman came up with the first

actual realization of a PKC, called RSA after their initials. given a,b € Z, b> 0, and ged(a, b) = 1.

e If gcd(a, b) # 1, there is no solution.

This requires more number theory! o In general, an equation of the form ax + by = ¢ has a solution if and
only if ged(a, b) divides c.

e If b <0, use —b and solve for (x, —y).
Diophantine equations are named after Diophantus, a Greek

mathematician who lived around 300-200 BCE.
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Euclidean Algorithm Termination

Repeated division with remainder. Notice that the sequence of remainders (the r;) is strictly decreasing

e thus, the sequence is finite (algorithm terminates).

Given a,b € Z, b > 0, and gcd(a, b) = 1:

2= bao+ 1o qo = [a/b],0 <10 <b Theorem 1 (Lamé, 1844)
b=ryq1+r = |b/n],0< n <r .
oqr TN a = Lb/ro], 1= n < 5logyg min(a, b).
n=rgx+r @ =[rn/n),0<n<n
More exactly, Lamé’s Theorem states
I'n—3 = m—2qn-1+ rn—1 rn—1 = gcd(a, b) .
Foo = f1Gn + Fn r=0 n < log.(min(a, b) + 1)
where 7 = (1 ++/5)/2 is the golden ratio.
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Extended Euclidean Algorithm Modular Inverses

let A,=0,A_1=1,B.»,=1,B_1=0and
Ak = qrAk—1 + Ak—2, Bk = qxBk—1+ Bik—>
for k=0,1,....

We have A, — a and B, = b (n from above), and Recall that Z}, = {a € Zp, | gcd(a, m) = 1} is the set of integers between

1 1 and m that are coprime to m.
AxBi_1 — BKAk_1 = (—1) T
_ _ 77, consists of exactly those integers that have modular inverses:
Putting k = n yields o for every a € Z},, there exists x € Z}, such that ax =1 (mod m).
Aanfl - BnAnfl = (_1)n—1

a(-1)"'B,1 + b(-1)"A,1 =1 .

Thus, a solution of ax + by = 1 is given by
x=(=1)""1By1, y=(-1)"Ar1 .

Mike Jacobson (University of Calgary) Computer Science 418 Week 9 15 / 22 Mike Jacobson (University of Calgary) Computer Science 418 Week 9 16 / 22



More Number Theory The RSA Cryptosystem

Computing Modular Inverses The RSA Cryptosystem

Given a € Z},, solve the linear congruence ax =1 (mod m) for x € Zj,.

® We want x such that Named after Ron Rivest, Adi Shamir, and Len Adleman, 1978.

-1 —1= — =1. . - :
m | ax — ym = ax—my Initially, NSA pressured these guys to keep their invention secret.

@ Can be solved using the Extended Euclidean Algorithm. ) ) .
Both encryption and decryption are modular exponentiations (same

@ We only need to compute the B; because we only need x, not y. modulus, different exponents):

e Encryption: C = M€ (mod n)

o Decryption: M = C? (mod n)

For a=95x =1 (mod 317), we obtain x == —10 (mod 317), so x = 307
(mod 317) is the modular inverse of 95.
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RSA Setup RSA Encryption and Decryption

The designer

Q Selects two distinct large primes p and g (each around 2123 ~ 1003) Encryption: Messages for the designer are integers in Z7
@ Computes n = pq and ¢(n) = (p —1)(q — 1). o if a message exceeds n, block it into less-than-n size blocks
e SeleCtS a random integer ec Z;(n) (SO l<e< ¢(n) and To send M encrypted, Compute and send

ged(e, ¢(n)) = 1).

@ Solves the linear congruence C=M° (mod n) where 0 < C < n.

de=1 d
€ (mod ¢(n)) Decryption: To decrypt C, the designer computes

for d € Z7, .- M= C? (mod n) where 0 < M < n.

© Keeps d secret and makes n and e public:
o the public key is K1 = {e, n}
o the private key is Ky = {d} (or {d, p, g}, discussed later).
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Why this Works What if gcd(M, n) # 17

We have

C?= (M =M (mod n),
We have assumed that gcd(M, n) = 1 in the description of RSA and for
. , : 5
Since d is chosen such that ed =1 (mod ¢(n)) we have applying Euler's Theorem. Is this a problem?
e Can prove that encryption/decryption still work.

ed = k¢(n) + 1 for some k € Z, @ The probability that gcd(M,n) # 1is 1/p+1/q, i.e., very small.

and o Note that since n = pg and M < n, gcd(M, n) € {1, p, g}, and thus
Med = ppke(m+1 — pappke(n) = M(M¢(n))k (mod n) . in these extremely rare cases we would likely find a factor of n.
@ Paranoid users can guarantee that gcd(M, n) = 1 by simply taking
Euler's Theorem states that a?(") =1 (mod n), so we have messages in blocks such that M < p, g (twice as slow).

C? = MMMk = M(1)k =M (mod n) .
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