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Public-Key Cryptography

Public-Key Cryptography

Whitfield Diffe and Martin Hellman, “New Directions in Cryptography”,
1976.

Note that Diffie and Hellman did not describe a specific means of
implementing a public-key cryptosystem.

They merely described how one could be used to achieve security,
authentication, (and indirectly, integrity and non-repudiation).

Also secretly discovered in 1970 as “non-secret encryption” by Clifford
Cocks and James H. Ellis of CESG (Communications-Electronics Security
Group, part of the the UK Government’s Government Communications
Headquarters(GCHQ))

disclosed in 1987; see http://jya.com/ellisdoc.htm.

Mike Jacobson (University of Calgary) Computer Science 418 Week 9 3 / 22

Public-Key Cryptography

Idea of Public-Key Cryptography

Every user has two keys

encryption key is public (so everyone can encrypt messages)

decryption key is only known to the

Deducing the decryption key from the encryption key should be
cmputationally infeasible.
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Public-Key Cryptography

Diagram of a Public-Key Cryptosystem
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Public-Key Cryptography

Trap-door One-Way Functions

Definition 1 (Trap-door one-way function)

A function f that satisfies the following properties:

1 Ease of Computation: f (x) is easy to compute for any x .
2 Computation Resistance with Trap-door: Given y = f (x) it is

computationally infeasible to determine x unless certain special
information used in the design of f is known.

When this trap-door k is known, there exists a function g which is easy
to compute such that x = g(k, y).

Key to designing public-key cryptosystems: decryption key acts as a trap
door for the encryption function.
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Public-Key Cryptography

Public-Key Cryptosystem

Definition 2 (Public Key Cryptosystem (PKC))

A PKC consists of a plaintext space M, a ciphertext space C, a public key
space K, and encryption functions EK1 :M→ C, indexed by public keys
K1 ∈ K, with the following properties:

1 Every encryption function EK1 has a left inverse DK2 , where K2 is the
private key corresponding to the public key K1.

2 EK1(M) and DK2(C ) are easy to compute when K1 and K2 are known.

3 DK2(EK1(M)) = M for all M ∈M.

4 Given K1, EK1 , and C = EK1(M), it is computationally infeasible to
find M or K2.

Properties 2, 3, 4 describe EK1 as a trapdoor one-way function.
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Public-Key Cryptography

Schematic of a Public-Key Cryptosystem
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Note 1

In a public-key cryptosystem (PKC), it is not necessary for the key channel
to be secure.
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Public-Key Cryptography

Properties of a PKC

Unlike conventional cryptosystems, messages encrypted using public key
cryptosystems contain sufficient information to uniquely determine the
plaintext and the key (given enough ciphertext, resources etc)

The entropy contained in these systems is zero.

This is the exact opposite of a perfectly secret system like the
one-time pad.

Security in a public key cryptosystem lies solely in the computational cost
of computing the plaintext and/or private key from the ciphertext
(computional security).
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Public-Key Cryptography

Hybrid Encryption

All PKC’s in use today are much slower (by a factor of 1000-1500 or so)
than conventional systems like AES, so they are generally not used for bulk
encryption. Most common uses:

Encryption and transmission of keys for conventional cryptosystems
(hybrid encryption)

Authentication and non-repudiation via digital signatures (later).
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More Number Theory

RSA Motivation

In 1978, Ron Rivest, Adi Shamir and Len Adleman came up with the first
actual realization of a PKC, called RSA after their initials.

This requires more number theory!
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More Number Theory

Linear Diophantine Equations

Solve the linear Diophantine equation

ax + by = 1

given a, b ∈ Z, b > 0, and gcd(a, b) = 1.

If gcd(a, b) 6= 1, there is no solution.

In general, an equation of the form ax + by = c has a solution if and
only if gcd(a, b) divides c .

If b < 0, use −b and solve for (x ,−y).

Diophantine equations are named after Diophantus, a Greek
mathematician who lived around 300-200 BCE.
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More Number Theory

Euclidean Algorithm

Repeated division with remainder.

Given a, b ∈ Z, b > 0, and gcd(a, b) = 1 :

a = bq0 + r0 q0 = ba/bc, 0 < r0 < b

b = r0q1 + r1 q1 = bb/r0c, 0 < r1 < r0

r0 = r1q2 + r2 q2 = br0/r1c, 0 < r2 < r1
...

rn−3 = rn−2qn−1 + rn−1 rn−1 = gcd(a, b)

rn−2 = rn−1qn + rn rn = 0
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More Number Theory

Termination

Notice that the sequence of remainders (the ri ) is strictly decreasing

thus, the sequence is finite (algorithm terminates).

Theorem 1 (Lamé, 1844)

n < 5 log10 min(a, b).

More exactly, Lamé’s Theorem states

n ≤ logτ (min(a, b) + 1)

where τ = (1 +
√

5)/2 is the golden ratio.
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More Number Theory

Extended Euclidean Algorithm

Let A−2 = 0, A−1 = 1, B−2 = 1, B−1 = 0 and

Ak = qkAk−1 + Ak−2, Bk = qkBk−1 + Bk−2

for k = 0, 1, . . . .

We have An = a and Bn = b (n from above), and

AkBk−1 − BkAk−1 = (−1)k−1 .

Putting k = n yields

AnBn−1 − BnAn−1 = (−1)n−1

a(−1)n−1Bn−1 + b(−1)nAn−1 = 1 .

Thus, a solution of ax + by = 1 is given by

x = (−1)n−1Bn−1, y = (−1)nAn−1 .
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More Number Theory

Modular Inverses

Recall that Z∗
m = {a ∈ Zm | gcd(a,m) = 1} is the set of integers between

1 and m that are coprime to m.

Z∗
m consists of exactly those integers that have modular inverses:

for every a ∈ Z∗
m, there exists x ∈ Z∗

m such that ax ≡ 1 (mod m).
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More Number Theory

Computing Modular Inverses

Given a ∈ Z∗
m, solve the linear congruence ax ≡ 1 (mod m) for x ∈ Z∗

m.

We want x such that

m | ax − 1 =⇒ ax − 1 = ym =⇒ ax −my = 1 .

Can be solved using the Extended Euclidean Algorithm.

We only need to compute the Bi because we only need x , not y .

Example 3

For a ≡ 95x ≡ 1 (mod 317), we obtain x =≡ −10 (mod 317), so x ≡ 307
(mod 317) is the modular inverse of 95.
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The RSA Cryptosystem

The RSA Cryptosystem

Named after Ron Rivest, Adi Shamir, and Len Adleman, 1978.

Initially, NSA pressured these guys to keep their invention secret.

Both encryption and decryption are modular exponentiations (same
modulus, different exponents):

Encryption: C ≡ Me (mod n)

Decryption: M ≡ Cd (mod n)
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The RSA Cryptosystem

RSA Setup

The designer

1 Selects two distinct large primes p and q (each around 21536 ≈ 10463)

2 Computes n = pq and φ(n) = (p − 1)(q − 1).

3 Selects a random integer e ∈ Z∗
φ(n) (so 1 < e < φ(n) and

gcd(e, φ(n)) = 1).

4 Solves the linear congruence

de ≡ 1 (mod φ(n))

for d ∈ Z∗
φ(n).

5 Keeps d secret and makes n and e public:

the public key is K1 = {e, n}
the private key is K2 = {d} (or {d , p, q}, discussed later).
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The RSA Cryptosystem

RSA Encryption and Decryption

Encryption: Messages for the designer are integers in Z∗
n

if a message exceeds n, block it into less-than-n size blocks

To send M encrypted, compute and send

C ≡ Me (mod n) where 0 < C < n .

Decryption: To decrypt C , the designer computes

M ≡ Cd (mod n) where 0 < M < n .
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The RSA Cryptosystem

Why this Works

We have
Cd ≡ (Me)d ≡ Med (mod n),

Since d is chosen such that ed ≡ 1 (mod φ(n)) we have

ed = kφ(n) + 1 for some k ∈ Z,

and
Med ≡ Mkφ(n)+1 ≡ MMkφ(n) ≡ M(Mφ(n))k (mod n) .

Euler’s Theorem states that aφ(n) ≡ 1 (mod n), so we have

Cd ≡ M(Mφ(n))k ≡ M(1)k ≡ M (mod n) .
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The RSA Cryptosystem

What if gcd(M , n) 6= 1?

We have assumed that gcd(M, n) = 1 in the description of RSA and for
applying Euler’s Theorem. Is this a problem?

Can prove that encryption/decryption still work.

The probability that gcd(M, n) 6= 1 is 1/p + 1/q, i.e., very small.

Note that since n = pq and M < n, gcd(M, n) ∈ {1, p, q}, and thus
in these extremely rare cases we would likely find a factor of n.

Paranoid users can guarantee that gcd(M, n) = 1 by simply taking
messages in blocks such that M < p, q (twice as slow).
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