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Efficiency of RSA

Efficiency of RSA

Set-up (need only be done once):

Prime generation uses a pseudo-random number generator (PRNG),
followed by a probable primality test (like the Fermat test, more in
PMAT 529).

Generating e again requires a PRNG and one gcd calculation (EA) –
or just pick you favourite e.

Computing n and φ(n) is negligible.

Computing d requires finding a modular inverse (EEA)

Encryption and Decryption: modular exponentiation (like Diffie-Hellman).
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Security of RSA

Security of RSA

Resides in the presumed difficulty of the Integer Factorization Problem:

Given an integer N, find a non-trivial factor of N.
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Security of RSA

Attacks on RSA

The following approaches break RSA:

Factoring n

⇓ φ(n) = (p − 1)(q − 1) ⇑ Assignment 4

Finding φ(n)

⇓ Proceed as designer ⇑ See note below
Finding the private key d

Note 1

There is an efficient algorithm that given any multiple of φ(n) finds φ(n)
with high probability. Note that ed − 1 is such a multiple.
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Security of RSA

Attacks on RSA, cont.

All three approaches (prev. slide) are computationally equivalent:

if one can be achieved, any of the other two one can be achieved with
very little computational overhead.

i.e., there are three trapdoors here: d , φ(n), and {p, q}

There is no proof that RSA is secure!

no proof that factoring is hard

not proven that other methods to compute M given C , e, n do not
exist, which do not rely on factoring (i.e., not known whether
breaking RSA is equivalent to factoring n)

Nevertheless, we need to design RSA systems such that n = pq cannot be
factored easily.
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Security of RSA

Factoring Record

The fastest known factoring algorithm is again the Number Field Sieve
(slightly different from the DLP NFS, but invented first). Run time:

exp
(
c(log n)1/3(log log n)2/3

)
= nc(log n/ log log n)2/3

with

c =
3

√
64

9
= 1.92 . . .

Current RSA modulus factoring record: RSA200 (200 digits, 663 bits),
Bahr, Boehm, Franke and Kleinjung, May 9, 2005.
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Security of RSA

Choice of RSA Parameters

Requirements for p and q:

1 Probable primes with high probability (say 2−100) — use a good
probabilistic primality test.

2 Large: at least 21536 ≈ 10463 (so n is 3072 bits)

3 Not too close together; |p − q| > 2128 for p, q ≈ 21536

4 p − 1, q − 1, p + 1, q + 1 must all have a large prime factor (see p.
150 of the Handbook of Applied Cryptography). Eg. pick p = 2p′ + 1
to be a Sophie Germain prime so that (p + 1)/4 = (p′ + 1)/2 is prime
or has a large prime factor; same for q.

5 p/q should not be near the ratio of two small (relatively prime)
integers a/b (say a, b ≤ 100).
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Security of RSA

Choice of RSA Parameters, cont.

Requirement for e:

For efficiency reasons, e is often chosen small; a popular choice is
e = 216 + 1 = 65537 (great for binary exponentiation, only two ‘1’
bits).

Beware of really small e for some applications; see Assignment 4.

In practice, can use e = 3, but only when RSA is used in conjunction
with a secure padding mechanism (eg. OAEP — next week!)

Requirement for d :

d > n0.292 (Boneh & Durfee 2000).
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Security of RSA

Advantages of RSA

Advantages:

1 Seems to be secure.

2 Key size is “relatively” small — two 463 digit numbers — although
other PKC’s have smaller keys (eg. elliptic curve systems).

3 No message expansion — ciphertexts and plaintexts have the same
length.

4 Can be used as a signature scheme (covered later).
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Security of RSA

Disadvantages of RSA

Disadvantages:

1 Very slow compared with DES, AES, and other symmetric key
cryptosystems. Decryption is also slower than elliptic curve based
systems.

2 Finding keys is fairly expensive.

3 Security is unproven

4 “Textbook” version (what we’ve been discussing!) leaks information
and is vulnerable to active attacks (later).
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Probabilistic Encryption

Probabilistic Encryption

One disadvantage of deterministic PKCs is that identical messages always
encrypt to the same ciphertext (like block ciphers in ECB mode).

particularly problematic if the message space is small (e.g. electronic
yes/no vote)

Probabilistic or randomized encryption utilizes randomness to attain a
provable, stronger level of security.

As a result, every message can have many possible encryptions, so a small
message space is no longer a problem.

leads to the notion of semantic security.
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Probabilistic Encryption

The ElGamal PKC

Randomized, security based on DLP (alternative to RSA which was based
on IFP)

Set-up: the designer produces her public and private keys as follows:

1 Selects a large prime p and a primitive root g of p

2 Computes y = g x (mod p) where 0 < x < p − 1.

Public key: {p, g , y}
Private key: {x}
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Probabilistic Encryption

ElGamal Encryption

Messages for the designer are integers M, 0 < M < p (so M ∈ Z∗p).

To send M encrypted, proceed as follows:

1 Select a random k ∈ Z, 0 < k < p.

2 Compute and send (C1,C2) where

C1 ≡ gk (mod p), 0 < C1 < p,

C2 ≡ Myk (mod p), 0 < C2 < p .
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Probabilistic Encryption

ElGamal Decryption

To decrypt (C1,C2), the designer computes

C2C
p−1−x
1 ≡ (Myk)(Cp−1−x

1 )

≡ (Mg xk)(gk(p−1−x))

≡ Mg xk+k(p−1)−kx

≡ M(gp−1)k

≡ M (mod p) .

Think of C1 as a “clue” that can be used to remove the “mask” yk in C2,
thus “unmasking” the encrypted message M.
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Probabilistic Encryption

Summary of ElGamal

As with DH key establishment, the security of this system relies on the
presumed difficulty of the DLP, but it is unknown whether there are other
ways of breaking ElGamal.

Disadvantages:

Message expansion by a factor of 2 (ciphertext is twice as long as the
plaintext).

Twice as much computational work for encrypting as RSA:

two exponentiations (and one multiplication), as opposed to one
exponentiation only for RSA.

A new random number k must be generated for each message.

Advantages: different security assumption, works in other settings (eg.
elliptic curves)
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Provable Security Under Passive Attacks

Polynomial Security

Definition 1 (Polynomial security, IND-CPA security)

A PKC is said to be polynomially secure or IND-CPA secure if no passive
adversary can in expected polynomial time select two plaintexts M1 and
M2 and then correctly distinguish between encryptions of M1 and M2 with
probability significantly greater than 1/2.

IND-CPA: indistinguishability under chosen plaintext attacks.
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Provable Security Under Passive Attacks

Semantic Security

Definition 2 (Semantic security)

A PKC is said to be semantically secure if for all probability distributions
over the message space, anything that can be computed by a passive
adversary in expected polynomial time about the plaintext given the
ciphertext can also be computed in expected polynomial time without the
ciphertext.

Intuitively, semantic security is a weaker version of perfect security

an adversary with polynomially-bounded computational resources (as
opposed to infinite resources in perfect security) can learn nothing
about the plaintext from the ciphertext.
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Provable Security Under Passive Attacks

Equivalance

Theorem 1

A PKC is semantically secure if and only if it is polynomially secure.

Although El Gamal is randomized, it is not semantically secure as
presented here (next week).

We will soon look at a PKC that is semantically secure assuming that a
certain number theoretic problem (not DLP or IFP) is hard. But first, we
need a bit more number theory.
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