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Quadratic Residuosity

Quadratic Residuosity

Definition 1 (Quadratic residues and non-residues)

Let m ∈ N and a ∈ Z∗m. Then a is said to be a quadratic residue modulo
m if there exists some x such that x2 ≡ a (mod m). a is a quadratic
non-residue modulo m otherwise.

Notation:

QRm: set of quadratic residues modulo m.

QNm: set of quadratic non-residues modulo m.

Note 1

Z∗m = QRm ∪ QNm.
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Quadratic Residuosity

Prime and Composite Moduli

Suppose m = p, a prime. Then Z∗p = QRp ∪ QNp and
|QRp| = |QNp| = (p − 1)/2.

Example 2

If p = 7 we have 12 ≡ 1 (mod 7), 22 ≡ 4 (mod 7), 32 ≡ 2 (mod 7),
42 ≡ 2 (mod 7), 52 ≡ 4 (mod 7), and 62 ≡ 1 (mod 7). Thus,
QR7 = {1, 2, 4} and QN7 = {3, 5, 6}.

Theorem 1

a ∈ QRn if and only of a ∈ QRp for all primes p | n.
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Quadratic Residuosity

Euler’s Criterion

Recall Fermat’s Theorem: ap−1 ≡ 1 (mod p) for p prime and a ∈ Z∗p.

Taking square roots (assume p odd) yields a(p−1)/2 ≡ ±1 (mod p).

Theorem 2 (Euler’s Criterion)

a ∈ QRp if and only if a
p−1

2 ≡ 1 (mod p).

Then a ∈ QNp if and only if a
p−1

2 ≡ −1 (mod p).
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Quadratic Residuosity

The Legendre Symbol

Definition 3 (Legendre symbol)

Let p be an odd prime. The Legendre symbol
(
a
p

)
is defined as:

(
a

p

)
=


0 if p | a
1 if a ∈ QRp

−1 if a ∈ QNp

We can compute Legendre symbols — and by Euler’s criterion test whether
or not a ∈ QRp — in polynomial time using binary exponentiation.
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Quadratic Residuosity

Revised Theorem

Example 4(
2
7

)
= 1 and

(
3
7

)
= − 1.

Remark 2 (Reformulation of Theorem 1)

a ∈ QRn if and only if
(
a
p

)
= 1 for all primes p | n.

Note 3 (Euler’s Criterion revisited)

a
p−1

2 ≡
(
a
p

)
(mod p) for all a ∈ Z.
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Quadratic Residuosity

The Jacobi Symbol

Definition 5 (Jacobi symbol)

Let Q ∈ N be odd with prime factorization Q =
r∏

i=1

qei
i , and let P ∈ Z.

The Jacobi symbol
(
P
Q

)
is defined as(

P

Q

)
=

r∏
i=1

(
P

qi

)ei

where
(
P
qi

)
is the Legendre symbol.

Note 4

If Q is prime, then the Jacobi symbol
(
P
Q

)
and the Legendre symbol

(
P
Q

)
are the same.

Note 5

Given the prime factorization of Q, the Jacobi symbol
(
P
Q

)
can be

computed in polynomial time.
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Quadratic Residuosity

Properties of the Jacobi Symbol

(
P

Q

)
=

(
P (mod Q)

Q

)
(

P1P2

Q

)
=

(
P1

Q

)(
P2

Q

)
(

P

Q1Q2

)
=

(
P

Q1

)(
P

Q2

)
(

2

Q

)
= (−1)

Q2−1
8

(
P

Q

)
=

(
Q

P

)P−1
2

Q−1
2

(quadratic reciprocity)

Properties 1, 4, and 5 allow one to compute
(
P
Q

)
in polynomial time

without factoring Q.

By Remark 2, we can have
(
a
n

)
= 1, but a /∈ QRn.
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Quadratic Residuosity

Pseudosquares

Definition 6 (Pseudosquare)

Let n = pq with distinct primes p, q. A pseudosquare (mod n) is an
integer a ∈ Z with

(
a
p

)(
a
q

)
= 1.

Note that
(
a
n

)
= 1 makes a “look like” a square (mod n), but a /∈ QRn.
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Quadratic Residuosity

The Quadratic Residuosity Problem (QRP)

Definition 7 (Quadratic Residuosity Problem (QRP))

Given an odd composite integer n and any a with
(
a
n

)
= 1, determine

whether a ∈ QRn.

Note 6

By Theorem 1 or Remark 2, the IFP is at least as hard has the QRP.
Equivalence is believed, but unproved.
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Quadratic Residuosity

Eg. Leakage in RSA

Another weakness of RSA is leakage of information: C ≡ Me (mod n)
implies (

C

n

)
=

(
M

n

)e

=

(
M

n

)
,

since e is odd.

Thus, one bit of information about the message is leaked (namely the
value of the Jacobi symbol

(
M
n

)
.

Thus, basic RSA is not sematically secure.

This would not happen if the ciphertext in RSA were randomized.
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Quadratic Residuosity

Eg. ElGamal is not Semantically Secure

An attacker can chose M1 ∈ QRp and M2 ∈ QNp and distinguish between
their encryptions in polynomial time.

uses properties of quadratic residues and the Legendre symbol

Solution: replace g by h ≡ g2 (mod p) everywhere

every quantity occurring in ElGamal is a quadratic residue modulo p.

can prove that this variation of ElGamal is semantically secure.
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The Goldwasser-Micali PKC

The Goldwasser-Micali PKC

Achieves semantic security assuming the intractability of the QRP.

Private key: {p, q} where p and q are distinct large primes.

Public key: {n, y} where n = pq and y is a pseudo-square modulo n.

Note 7

How to find y :

Generate random integers y ∈ Z∗n until a pseudosquare is found.

Since there are four combinations (±1,±1) for
((y

p

)
,
(y
q

))
, one in four

choices of y yields (−1,−1).

Hence, we expect to find a pseudosquare (mod n) after four trials at
a value of y .
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The Goldwasser-Micali PKC

Encryption

To encrypt a message M intended for a user with the above public/private
key pair, proceed as follows:

1 Represent M as a bit-string (m1m2 . . . mt) (mi = 0, 1).
2 For i = 1, . . . , t :

1 Select random ri ∈ Z∗
n.

2 Put ci ≡ ymi r2
i (mod n) with 0 < ci < n (so ci ≡ r2

i (mod n) if
mi = 0 and ci ≡ yr2

i (mod n) if mi = 1).

3 Send C = (c1c2 . . . ct).

Mike Jacobson (University of Calgary) Computer Science 418 Week 11 15 / 35

The Goldwasser-Micali PKC

Decryption

To decrypt, the recipient proceeds as follows:
1 for i = 1, . . . , t:

1 Compute the Legendre symbol ei =
(
ci

p

)
.

2 mi = (1− ei )/2 (so mi − 0 if ei = 1 and mi = 1 if ei = −1).

2 M = (m1m2 . . . mt).
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The Goldwasser-Micali PKC

Correctness of Decryption

Proof that decryption is correct.

Let i ∈ {1, . . . , t}. Note that
(r2

i
p

)
=
(
ri
p

)2
= (±1)2 = 1. Thus,

ei =

(
ci

p

)
=

(
ym1r2

i

p

)
=

(
ym1

p

)(
r2
i

p

)
=

(
y

p

)mi

= (−1)mi

Thus, if ei = 1 then mi = 0 and if ei = −1 then mi = 1.
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The Goldwasser-Micali PKC

Polynomial Security of Goldwasser-Micali

Proof sketch of polynomial security.

Since ri is selected at random:

r2
i is a random quadratic residue modulo n

thus, yr2
i is a random pseudosquare modulo n.

The cryptanalyst only sees a sequence of r2
i or yr2

i (quadratic residues and
pseudosquares), and as the QRP is hard, he cannot distinguish one from
the other.

Major disadvantage:

huge message expansion, by a factor of logt(n)

A t-bit message yields a ciphertext of length ≈ t log2(n).
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Active Attacks on RSA

Active Attacks

Semantic and polynomial security provide a good notion of security
against passive attacks. However, many (deterministic and randomized)
PKCs are not secure against active attacks (CCA’s).

Take the example of RSA. Note that RSA is multiplicative:

(M1M2)e ≡ Me
1Me

2 ≡ C1C2 (mod n)

i.e., a factorization of the plaintext implies one of the corresponding
ciphertext. This property can be exploited in two attacks.
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Active Attacks on RSA

Multiplicative CCA on RSA

An attacker wishing the decryption of some RSA ciphertext C proceeds as
follows:

1 Generates a random X ∈ Z∗n with X e 6≡ 1 (mod n).

2 Computes C ′ ≡ CX e (mod n) (this is the chosen ciphertext; note
that C ′ 6= C ).

3 Obtains the corresponding plaintext

M ′ ≡ C ′
d ≡ Cd(X e)d ≡ MX (mod n)

4 Computes M ≡ MX−1 (mod n).
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Active Attacks on RSA

Meet-in-the-Middle Attack on RSA

If M ≈ 2l for some l , then with non-negligible probability, M is composite
and satisfies M = M1M2 with M1, M2 ≈ 2l/2.

The probability that a number of 40− 64 bits factors into equal-size
factors is between 18 and 50 percent (see Table 1 of “Why textbook
El Gamal and RSA encryption are insecure (extended abstract)” by
Boneh, Joux, and Nguyen, in ASIACRYPT 2000)).

The adversary builds a list {1e , 2e (mod n), . . . , (2l/2)e (mod n)} and
their inverses (mod n).

He then searches for a match Ci−e (mod n) in the list (i−e is the
modular inverse of ie).

If Ci−e ≡ je (mod n) for some j , then M ≡ ij (mod n).

Requires 2 · 2l/2 modular exponentiations (rest is negligible).
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Active Attacks on RSA

Example Application of Meet-in-the-Middle

Hybrid encryption: consider the case where 1024-bit RSA modulus is used
to encrypt a 56-bit DES key.

The list takes 228 · 1024 = 238 bits of storage (about 32 GB)

Requires 229 modular exponentiations.

This is easily done on a good PC.
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Active Attacks on RSA

Protecting against the Multiplicative Property

The multiplicative property of RSA can be obscured by randomizing the
plaintext input in a fixed way, thus overcoming these problems.

Can defeat CCA by rejecting decryptions of “invalid” messages.

One example is RSA-OAEP (discussed below):

RSA plus optimal asymmetric encryption padding

plaintext is padded with 0’s and transformed to a statistically random
bit string via a reversible, randomized, unkeyed transformation.
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Provable Security Against Active Attacks

IND-CCA2 Security

To address active attacks (CCA’s), we need even stronger security notions
than semantic security

Definition 8 (IND-CCA2 security)

A PKC is IND-CCA2 secure if it satisfies indistinguishability under
adaptive chosen ciphertext attacks; in other words, no adversary can in
expected polynomial time select two plaintext messages M1 and M2 and
then correctly distinguish between encryptions of M1 and M2 with
probability significantly greater than 1/2, even when adaptive chosen
ciphertext attacks are permitted.
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Provable Security Against Active Attacks

IND-CCA2 Security, cont.

IND-CCA2 has the same definition as as polynomial security except that
active attacks (in particular adaptive CCA’s) are permitted.

It is the active attack equivalent of semantic security.

Other security levels:

IND-CCA1 — indistinguishability under (non-adaptive) chosen
ciphertext attacks

IND-CPA — indistinguishability under chosen plaintext attacks (same
as polynomial security)

Note that IND-CCA2 =⇒ IND-CCA1 =⇒ IND-CPA.
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Provable Security Against Active Attacks

Non-malleability

Definition 9 (Non-malleability)

A PKC is non-malleable if given a ciphertext C corresponding to some
message M, it is computationally infeasible to generate a different
ciphertext C ′ whose decryption M ′ is related to M in some known manner,
i.e., M ′ = f (M) for some arbitrary but known function f .

Non-malleability provides data integrity with public-key encryption without
any source identification. We have

NM-CPA =⇒ IND-CPA

NM-CCA1 =⇒ IND-CCA1

NM-CCA2⇐⇒ IND-CCA2

It is known that IND-CPA 6=⇒ NM-CPA and IND-CCA1 6=⇒ NM-CCA1.
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Provable Security Against Active Attacks

Plaintext Awareness

Definition 10 (Plaintext awareness)

A PKC is plaintext-aware if it is computationally infeasible for an adversary
to produce a “valid” ciphertext (having prescribed redundancy) without
knowledge of the corresponding plaintext.

A plaintext-aware PKC resists adaptive attacks because any adaptive
modification of a target ciphertext will with high probability not be “valid.”

Plaintext awareness =⇒ Non-malleability.
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Provable Security Against Active Attacks

Optimal Asymmetric Encryption Padding (OAEP)

Optimal Asymmetric Encryption Padding (OAEP):

Bellare and Rogaway, Eurocrypt 1994

An invertible transformation from a PKC plaintext space to the
domain of a one-way trapdoor function.

OAEP augments PKCs to provide the above security properties by adding
redundancy and transforming the plaintext before encryption. It works
with most PKCs.
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Provable Security Against Active Attacks

RSA-OAEP

Standardized in RSA’s PKCS#1, IEEE P1363, e-commerce protocol SET
(Secure Electronic Transaction)

Parameters

n — length of plaintext messages to encrypt (in bits)

(N, e) — Alice’s RSA public key (N has k = n + k0 + k1 bits, where
2−k0 and 2−k1 must be sufficiently small). For example, if k = 3072,
can take k0 = k1 = 128 and n = 2816.

d — Alice’s RSA private key

G : {0, 1}k0 7→ {0, 1}k−k0 (random function)

H : {0, 1}k−k0 7→ {0, 1}k0 (random function)
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Provable Security Against Active Attacks

Encryption

Encryption (message M):

C ≡
((

M‖0k1 ⊕ G (r)
)
‖
(
r ⊕ H(M‖0k1 ⊕ G (r))

))e
(mod N) .

1 Generate a random k0-bit number r .

2 Compute s = (M‖0k1)⊕ G (r) (append k1 0 bits to M for data
integrity checking and XOR with G (r)). Note: s has n + k1 = k − k0

bits.

3 Compute t = r ⊕ H(s). Note: t has k0 bits (same as N), but could
be a bit bigger than N. If (s‖t) ≥ N, go to 1 (make sure
concatenation of s and t as an integer is less than the RSA modulus).

4 RSA-encrypt (s‖t), i.e., compute C ≡ (s‖t)e (mod N).
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Provable Security Against Active Attacks

Decryption

Decryption (ciphertext C ):

1 Compute (s‖t) ≡ Cd (mod N).

2 Compute u = t ⊕ H(s) (k0 bit) and v = s ⊕ G (u) (k − k0 bits).

3 Output M if v = (M‖0k1) (i.e. the decrypted message has the
required redundancy), otherwise reject as invalid.

Mike Jacobson (University of Calgary) Computer Science 418 Week 11 31 / 35

Provable Security Against Active Attacks

Security of RSA-OAEP

Can be proven to be plaintext-aware assuming that the RSA problem
(computing eth roots modulo n) is hard:

Defeats CCAs because only messages with the prescribed redundancy
(0k1 appended) are accepted. Probability of a random ciphertext
decrypting to an acceptable value is 2−k1 .

Plaintext is also randomized — prevents small message space attacks
(2k0 possible encryptions of each message).
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Provable Security Against Active Attacks

Random Oracle Model

RSA-OAEP’s proof of security relies on the assumption that the functions
G and H are random, i.e., mathematical functions mapping every possible
query to a random response from its output domain.

Such functions are referred to as random oracles, and security proofs
relying on this type of assumption are said to use the random oracle model
(ROM).

In practice, G and H are realized with a hash function like SHA-1.

In this case, the encryption scheme cannot be proven to be
plaintext-aware.

Nevertheless provides much greater security assurances than standard
RSA
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Provable Security Against Active Attacks

IND-CCA2 Security without Random Oracles

A variation of El Gamal due to Cramer and Shoup (CRYPTO 1998) is
IND-CCA2 secure under the assumption that the decision Diffie-Hellman
problem (given g , ga, gb, g c ∈ G , does g c = gab) is hard.

The proof does not use the ROM.

A recent result (Dent, EUROCRYPT 2006) shows that it is also
plaintext aware, again without assuming random oracles.
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Provable Security Against Active Attacks

Further Reading

Koblitz and Menezes, “Another look at provable security” (I and II), see
links on “external links” page.

discusses some issues with these types of security results, especially
their relevance for practical cryptography.
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