Computer Science 418

Quadratic Residuosity, Goldwasser-Micali, IND-CCA2 Security

Mike Jacobson
Department of Computer Science
University of Calgary
Week 11

```
Prime and Composite Moduli
```


Definition 1 (Quadratic residues and non-residues)

Let $m \in \mathbb{N}$ and $a \in \mathbb{Z}_{m}^{*}$. Then a is said to be a quadratic residue modulo m if there exists some x such that $x^{2} \equiv a(\bmod m)$. a is a quadratic non-residue modulo m otherwise.

Notation:

- $Q R_{m}$: set of quadratic residues modulo m.
- $Q N_{m}$: set of quadratic non-residues modulo m.

Note 1

```
\mp@subsup{\mathbb{Z}}{m}{*}=Q\mp@subsup{R}{m}{}\cupQ\mp@subsup{N}{m}{}.
```Quadratic Residuosity

The Goldwasser-Micali PKCActive Attacks on RSAProvable Security Against Active Attacks
Quadratic Residuosity
Quadratic Residuosity
Definition 1 (Quadratic residues and non-residues)
Let \(m \in \mathbb{N}\) and \(a \in \mathbb{Z}_{m}^{*}\). Then \(a\) is said to be a quadratic residue modulo
\(m\) if there exists some \(x\) such that \(x^{2} \equiv a(\bmod m) . a\) is a quadratic
non-residue modulo \(m\) otherwise.

Suppose \(m=p\), a prime. Then \(\mathbb{Z}_{p}^{*}=Q R_{p} \cup Q N_{p}\) and \(\left|Q R_{p}\right|=\left|Q N_{p}\right|=(p-1) / 2\).
```

Example 2
If p=7 we have 12 \equiv1(mod 7), 2
4}\equiv2(\operatorname{mod}7),\mp@subsup{5}{}{2}\equiv4(\operatorname{mod}7),\mathrm{ and 6}\mp@code{\mp@subsup{2}{}{2}}\equiv1(\operatorname{mod}7).Thus
QR }={1,2,4}\mathrm{ and }Q\mp@subsup{N}{7}{}={3,5,6}

```

\section*{Theorem 1}
\(a \in Q R_{n}\) if and only of \(a \in Q R_{p}\) for all primes \(p \mid n\).

Recall Fermat's Theorem: \(a^{p-1} \equiv 1(\bmod p)\) for \(p\) prime and \(a \in \mathbb{Z}_{p}^{*}\).
Taking square roots (assume \(p\) odd) yields \(a^{(p-1) / 2} \equiv \pm 1(\bmod p)\).

\section*{Theorem 2 (Euler's Criterion)}
\(a \in Q R_{p}\) if and only if \(a^{\frac{p-1}{2}} \equiv 1(\bmod p)\).
Then \(a \in Q N_{p}\) if and only if \(a^{\frac{p-1}{2}} \equiv-1(\bmod p)\).

\section*{Revised Theorem}
```

Example 4
(\frac{2}{7})=1 and (\frac{3}{7})=-1.

```
```

$\left(\frac{2}{7}\right)=1$ and $\left(\frac{3}{7}\right)=-1$.

```

\section*{Remark 2 (Reformulation of Theorem 1)}
\(a \in Q R_{n}\) if and only if \(\left(\frac{a}{p}\right)=1\) for all primes \(p \mid n\).
\[
a \in Q R_{n} \text { if and only if }\left(\frac{a}{p}\right)=1 \text { for all primes } p \mid n \text {. }
\]

\section*{Note 3 (Euler's Criterion revisited) \\ \(a^{\frac{p-1}{2}} \equiv\left(\frac{a}{p}\right)(\bmod p)\) for all \(a \in \mathbb{Z}\).}

\section*{Definition 3 (Legendre symbol)}

Let \(p\) be an odd prime. The Legendre symbol \(\left(\frac{a}{p}\right)\) is defined as:
\[
\left(\frac{a}{p}\right)= \begin{cases}0 & \text { if } p \mid a \\ 1 & \text { if } a \in Q R_{p} \\ -1 & \text { if } a \in Q N_{p}\end{cases}
\]

We can compute Legendre symbols - and by Euler's criterion test whether or not \(a \in Q R_{p}\) - in polynomial time using binary exponentiation.

Quadratic Residuosity

\section*{The Jacobi Symbol}

\section*{Definition 5 (Jacobi symbol)}

Let \(Q \in \mathbb{N}\) be odd with prime factorization \(Q=\prod_{i=1}^{r} q_{i}^{e_{i}}\), and let \(P \in \mathbb{Z}\).
The Jacobi symbol \(\left(\frac{P}{Q}\right)\) is defined as
\[
\left(\frac{P}{Q}\right)=\prod_{i=1}^{r}\left(\frac{P}{q_{i}}\right)^{e_{i}}
\]
where \(\left(\frac{P}{q_{i}}\right)\) is the Legendre symbol.

\section*{Note 4}

If \(Q\) is prime, then the Jacobi symbol \(\left(\frac{P}{Q}\right)\) and the Legendre symbol \(\left(\frac{P}{Q}\right)\) are the same.
\begin{tabular}{lll}
Mike Jacobson (University of Calgary) & Computer Science 418 & Week \(118 / 35\) \\
INOTE J
\end{tabular}
\[
\begin{aligned}
\left(\frac{P}{Q}\right) & =\left(\frac{P(\bmod Q)}{Q}\right) \\
\left(\frac{P_{1} P_{2}}{Q}\right) & =\left(\frac{P_{1}}{Q}\right)\left(\frac{P_{2}}{Q}\right) \\
\left(\frac{P}{Q_{1} Q_{2}}\right) & =\left(\frac{P}{Q_{1}}\right)\left(\frac{P}{Q_{2}}\right) \\
\left(\frac{2}{Q}\right) & =(-1)^{\frac{Q^{2}-1}{8}} \\
\left(\frac{P}{Q}\right) & =\left(\frac{Q}{P}\right)^{\frac{P-1}{2} \frac{Q-1}{2}} \quad \text { (quadratic reciprocity) }
\end{aligned}
\]

\section*{Definition 6 (Pseudosquare)}

Let \(n=p q\) with distinct primes \(p, q\). A pseudosquare \((\bmod n)\) is an integer \(a \in \mathbb{Z}\) with \(\left(\frac{a}{p}\right)\left(\frac{a}{q}\right)=1\).

Note that \(\left(\frac{a}{n}\right)=1\) makes a "look like" a square \((\bmod n)\), but \(a \notin Q R_{n}\).

Properties 1,4 , and 5 allow one to compute \(\left(\frac{P}{Q}\right)\) in polynomial time without factoring \(Q\).

\section*{Definition 7 (Quadratic Residuosity Problem (QRP))}

Given an odd composite integer \(n\) and any a with \(\left(\frac{a}{n}\right)=1\), determine whether \(a \in Q R_{n}\).

\section*{Note 6}

By Theorem 1 or Remark 2, the IFP is at least as hard has the QRP. Equivalence is believed, but unproved.

An attacker can chose \(M_{1} \in Q R_{p}\) and \(M_{2} \in Q N_{p}\) and distinguish between their encryptions in polynomial time.
- uses properties of quadratic residues and the Legendre symbol

Solution: replace \(g\) by \(h \equiv g^{2}(\bmod p)\) everywhere
- every quantity occurring in EIGamal is a quadratic residue modulo \(p\).
- can prove that this variation of EIGamal is semantically secure.

Achieves semantic security assuming the intractability of the QRP.
- Private key: \(\{p, q\}\) where \(p\) and \(q\) are distinct large primes.
- Public key: \(\{n, y\}\) where \(n=p q\) and \(y\) is a pseudo-square modulo \(n\).

\section*{Note 7}

How to find \(y\) :
- Generate random integers \(y \in \mathbb{Z}_{n}^{*}\) until a pseudosquare is found.
- Since there are four combinations \((\pm 1, \pm 1)\) for \(\left(\left(\frac{y}{p}\right),\left(\frac{y}{q}\right)\right)\), one in four choices of \(y\) yields \((-1,-1)\).
- Hence, we expect to find a pseudosquare \((\bmod n)\) after four trials at a value of \(y\).

\section*{Encryption}

\section*{Decryption}

To encrypt a message \(M\) intended for a user with the above public/private key pair, proceed as follows:
(1) Represent \(M\) as a bit-string \(\left(m_{1} m_{2} \ldots m_{t}\right)\left(m_{i}=0,1\right)\).
(2) For \(i=1, \ldots, t\) :
(c) Select random \(r_{i} \in \mathbb{Z}_{n}^{*}\).
(2) Put \(c_{i} \equiv y^{m_{i}} r_{i}^{2}(\bmod n)\) with \(0<c_{i}<n\left(\right.\) so \(c_{i} \equiv r_{i}^{2}(\bmod n)\) if \(m_{i}=0\) and \(c_{i} \equiv y r_{i}^{2}(\bmod n)\) if \(\left.m_{i}=1\right)\).
(3) Send \(C=\left(c_{1} c_{2} \ldots c_{t}\right)\).

To decrypt, the recipient proceeds as follows:
(1) for \(i=1, \ldots, t\) :
(1) Compute the Legendre symbol \(e_{i}=\left(\frac{c_{i}}{p}\right)\).
(2) \(m_{i}=\left(1-e_{i}\right) / 2 \quad\) (so \(m_{i}-0\) if \(e_{i}=1\) and \(m_{i}=1\) if \(e_{i}=-1\)).
(2) \(M=\left(m_{1} m_{2} \ldots m_{t}\right)\).

\section*{Proof that decryption is correct.}

Let \(i \in\{1, \ldots, t\}\). Note that \(\left(\frac{r_{i}^{2}}{p}\right)=\left(\frac{r_{i}}{p}\right)^{2}=(\pm 1)^{2}=1\). Thus,
\[
e_{i}=\left(\frac{c_{i}}{p}\right)=\left(\frac{y^{m_{1}} r_{i}^{2}}{p}\right)=\left(\frac{y^{m_{1}}}{p}\right)\left(\frac{r_{i}^{2}}{p}\right)=\left(\frac{y}{p}\right)^{m_{i}}=(-1)^{m_{i}}
\]

Thus, if \(e_{i}=1\) then \(m_{i}=0\) and if \(e_{i}=-1\) then \(m_{i}=1\).

\section*{Active Attacks}

Semantic and polynomial security provide a good notion of security against passive attacks. However, many (deterministic and randomized) PKCs are not secure against active attacks (CCA's).

Take the example of RSA. Note that RSA is multiplicative:
\[
\left(M_{1} M_{2}\right)^{e} \equiv M_{1}^{e} M_{2}^{e} \equiv C_{1} C_{2} \quad(\bmod n)
\]
i.e., a factorization of the plaintext implies one of the corresponding ciphertext. This property can be exploited in two attacks.

\section*{Proof sketch of polynomial security}

Since \(r_{i}\) is selected at random:
- \(r_{i}^{2}\) is a random quadratic residue modulo \(n\)
- thus, \(y r_{i}^{2}\) is a random pseudosquare modulo \(n\).

The cryptanalyst only sees a sequence of \(r_{i}^{2}\) or \(y r_{i}^{2}\) (quadratic residues and pseudosquares), and as the QRP is hard, he cannot distinguish one from the other.

\section*{Major disadvantage:}
- huge message expansion, by a factor of \(\log _{t}(n)\)
- A \(t\)-bit message yields a ciphertext of length \(\approx t \log _{2}(n)\).

\section*{Multiplicative CCA on RSA}

An attacker wishing the decryption of some RSA ciphertext \(C\) proceeds as follows:
(1) Generates a random \(X \in \mathbb{Z}_{n}^{*}\) with \(X^{e} \not \equiv 1(\bmod n)\).
(2) Computes \(C^{\prime} \equiv C X^{e}(\bmod n)\) (this is the chosen ciphertext; note that \(C^{\prime} \neq C\)).
(3) Obtains the corresponding plaintext
\[
M^{\prime} \equiv C^{\prime d} \equiv C^{d}\left(X^{e}\right)^{d} \equiv M X \quad(\bmod n)
\]
(Computes \(M \equiv M X^{-1}(\bmod n)\).

If \(M \approx 2^{\prime}\) for some \(I\), then with non-negligible probability, \(M\) is composite and satisfies \(M=M_{1} M_{2}\) with \(M_{1}, M_{2} \approx 2^{1 / 2}\).
- The probability that a number of \(40-64\) bits factors into equal-size factors is between 18 and 50 percent (see Table 1 of "Why textbook El Gamal and RSA encryption are insecure (extended abstract)" by Boneh, Joux, and Nguyen, in ASIACRYPT 2000)).

The adversary builds a list \(\left\{1^{e}, 2^{e}(\bmod n), \ldots,\left(2^{1 / 2}\right)^{e}(\bmod n)\right\}\) and their inverses \((\bmod n)\).
- He then searches for a match \(\mathrm{Ci}^{-e}(\bmod n)\) in the list \(\left(i^{-e}\right.\) is the modular inverse of \(i^{e}\)).
- If \(C i^{-e} \equiv j^{e}(\bmod n)\) for some \(j\), then \(M \equiv i j(\bmod n)\).

Requires \(2 \cdot 2^{1 / 2}\) modular exponentiations (rest is negligible).

\section*{Protecting against the Multiplicative Property}

The multiplicative property of RSA can be obscured by randomizing the plaintext input in a fixed way, thus overcoming these problems.

Can defeat CCA by rejecting decryptions of "invalid" messages.
One example is RSA-OAEP (discussed below):
- RSA plus optimal asymmetric encryption padding
- plaintext is padded with 0 's and transformed to a statistically random bit string via a reversible, randomized, unkeyed transformation.

Hybrid encryption: consider the case where 1024-bit RSA modulus is used to encrypt a 56-bit DES key.
- The list takes \(2^{28} \cdot 1024=2^{38}\) bits of storage (about 32 GB)
- Requires \(2^{29}\) modular exponentiations.
- This is easily done on a good PC.

\section*{IND-CCA2 Security}

To address active attacks (CCA's), we need even stronger security notions than semantic security

\section*{Definition 8 (IND-CCA2 security)}

A PKC is IND-CCA2 secure if it satisfies indistinguishability under adaptive chosen ciphertext attacks; in other words, no adversary can in expected polynomial time select two plaintext messages \(M_{1}\) and \(M_{2}\) and then correctly distinguish between encryptions of \(M_{1}\) and \(M_{2}\) with probability significantly greater than \(1 / 2\), even when adaptive chosen ciphertext attacks are permitted.

IND-CCA2 has the same definition as as polynomial security except that active attacks (in particular adaptive CCA's) are permitted.
- It is the active attack equivalent of semantic security.

Other security levels:
- IND-CCA1 - indistinguishability under (non-adaptive) chosen ciphertext attacks
- IND-CPA - indistinguishability under chosen plaintext attacks (same as polynomial security)

Note that IND-CCA2 \(\Longrightarrow\) IND-CCA1 \(\Longrightarrow\) IND-CPA.

Provable Security Against Active Attacks

\section*{Plaintext Awareness}

\section*{Definition 10 (Plaintext awareness)}

A PKC is plaintext-aware if it is computationally infeasible for an adversary to produce a "valid" ciphertext (having prescribed redundancy) without knowledge of the corresponding plaintext.

A plaintext-aware PKC resists adaptive attacks because any adaptive modification of a target ciphertext will with high probability not be "valid."

Plaintext awareness \(\Longrightarrow\) Non-malleability.

\section*{Definition 9 (Non-malleability)}

A PKC is non-malleable if given a ciphertext \(C\) corresponding to some message \(M\), it is computationally infeasible to generate a different ciphertext \(C^{\prime}\) whose decryption \(M^{\prime}\) is related to \(M\) in some known manner, i.e., \(M^{\prime}=f(M)\) for some arbitrary but known function \(f\).

Non-malleability provides data integrity with public-key encryption without any source identification. We have
- NM-CPA \(\Longrightarrow\) IND-CPA
- NM-CCA1 \(\Longrightarrow\) IND-CCA1
- NM-CCA2 \(\Longleftrightarrow\) IND-CCA2

It is known that IND-CPA \(\nRightarrow\) NM-CPA and IND-CCA1 \(\nRightarrow\) NM-CCA1.
Mike Jacobson (University of Calgary) Computer Science 418 Week 11 26/35

\section*{Optimal Asymmetric Encryption Padding (OAEP)}

Optimal Asymmetric Encryption Padding (OAEP):
- Bellare and Rogaway, Eurocrypt 1994
- An invertible transformation from a PKC plaintext space to the domain of a one-way trapdoor function.

OAEP augments PKCs to provide the above security properties by adding redundancy and transforming the plaintext before encryption. It works with most PKCs.

\section*{RSA-OAEP}

\section*{Encryption}

Standardized in RSA's PKCS\#1, IEEE P1363, e-commerce protocol SET (Secure Electronic Transaction)

\section*{Parameters}
- \(n\) - length of plaintext messages to encrypt (in bits)
- (\(N, e\)) - Alice's RSA public key (\(N\) has \(k=n+k_{0}+k_{1}\) bits, where \(2^{-k_{0}}\) and \(2^{-k_{1}}\) must be sufficiently small). For example, if \(k=3072\), can take \(k_{0}=k_{1}=128\) and \(n=2816\).
- \(d\) - Alice's RSA private key
- \(G:\{0,1\}^{k_{0}} \mapsto\{0,1\}^{k-k_{0}}\) (random function)
- \(H:\{0,1\}^{k-k_{0}} \mapsto\{0,1\}^{k_{0}}\) (random function)

Provable Security Against Active Attacks

\section*{Decryption}

\section*{Decryption (ciphertext \(C\)):}
(1) Compute \((s \| t) \equiv C^{d}(\bmod N)\).
(2) Compute \(u=t \oplus H(s)\) (\(k_{0}\) bit) and \(v=s \oplus G(u)\) (\(k-k_{0}\) bits).
(3) Output \(M\) if \(v=\left(M \| 0^{k_{1}}\right)\) (i.e. the decrypted message has the required redundancy), otherwise reject as invalid.

Encryption (message \(M\))
\[
C \equiv\left(\left(M \| 0^{k_{1}} \oplus G(r)\right) \|\left(r \oplus H\left(M \| 0^{k_{1}} \oplus G(r)\right)\right)\right)^{e} \quad(\bmod N) .
\]
(1) Generate a random \(k_{0}\)-bit number \(r\).
(2) Compute \(s=\left(M \| 0^{k_{1}}\right) \oplus G(r)\) (append \(k_{1} 0\) bits to \(M\) for data integrity checking and XOR with \(G(r))\). Note: \(s\) has \(n+k_{1}=k-k_{0}\) bits.
(3) Compute \(t=r \oplus H(s)\). Note: \(t\) has \(k_{0}\) bits (same as \(N\)), but could be a bit bigger than \(N\). If \((s \| t) \geq N\), go to 1 (make sure concatenation of \(s\) and \(t\) as an integer is less than the RSA modulus).
(0) RSA-encrypt \((s \| t)\), i.e., compute \(C \equiv(s \| t)^{e}(\bmod N)\).

Security of RSA-OAEP

Can be proven to be plaintext-aware assuming that the RSA problem (computing eth roots modulo \(n\)) is hard:
- Defeats CCAs because only messages with the prescribed redundancy (\(0^{k_{1}}\) appended) are accepted. Probability of a random ciphertext decrypting to an acceptable value is \(2^{-k_{1}}\).
- Plaintext is also randomized - prevents small message space attacks (2 \(2^{k_{0}}\) possible encryptions of each message).

RSA-OAEP's proof of security relies on the assumption that the functions \(G\) and \(H\) are random, i.e., mathematical functions mapping every possible query to a random response from its output domain.

Such functions are referred to as random oracles, and security proofs relying on this type of assumption are said to use the random oracle model (ROM).

In practice, \(G\) and \(H\) are realized with a hash function like SHA-1.
- In this case, the encryption scheme cannot be proven to be plaintext-aware.
- Nevertheless provides much greater security assurances than standard RSA

\section*{Further Reading}

\footnotetext{
Koblitz and Menezes, "Another look at provable security" (I and II), see links on "external links" page.
- discusses some issues with these types of security results, especially their relevance for practical cryptography.
}

A variation of El Gamal due to Cramer and Shoup (CRYPTO 1998) is IND-CCA2 secure under the assumption that the decision Diffie-Hellman problem (given \(g, g^{a}, g^{b}, g^{c} \in G\), does \(g^{c}=g^{a b}\)) is hard.
- The proof does not use the ROM.
- A recent result (Dent, EUROCRYPT 2006) shows that it is also plaintext aware, again without assuming random oracles.```

