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Digital Signatures

Digital Signatures: Definition

Data origin authentication is usually achieved by means of a signature, i.e.
a means by which the recipient of a message can authenticate the identity
of the sender.

Definition 1 (Digital signature)

A means for data authentication that should have two properties:

1 Only the sender can produce his signature.

2 Anyone should be easily able to verify the validity of the signature.
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Digital Signatures

Digital Signatures: Observations

Observations:

Properties 1 and 2 provide non-repudiation: if there is a dispute over
a signature (a receiver claims that the sender signed the message,
whereas the signer claims he didn’t), anyone can resolve the dispute.
For ordinary written signatures, one might need a hand-writing expert.

Signatures are different from MACs:

both sender and receiver can generate a MAC, whereas only the sender
can generate a signature.
only sender and receiver can verify a MAC, whereas anyone can verify a
signature.

In order to prevent replay attacks (replay a signed message later), it
may be necessary to include a time stamp or sequence numbers in the
signature.
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Signatures via Public Key Cryptosystems

Signature Capable PKCs

Definition 2 (Signature capability)

A PKC is signature capable if M = C and EK1(DK2(C )) = C for all C ∈ C.

So in a signature capable PKC, decryptions are right and left inverses
(i.e. honest-to-goodness inverses) of encryptions.

Example 3

RSA has signature capability. ElGamal and Goldwasser-Micali do not.
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Signatures via Public Key Cryptosystems

Signatures Without Secrecy Using PKC

Alice wishes to send a non-secret message M to Bob along with a
signature S that authenticates M to Bob.

She sends (A, M, S) where

A is her identity,

M is the message,

S = DA(M) is the “decryption” of M under her private key.

To verify S , Bob

checks A and looks up Alice’s public key,

computes the “encryption” EA(S) of S under Alice’s public key,

accepts the signature if and only if M = EA(S)

Note that EA(S) = EA(DA(M)) = M if everything was done correctly.
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Signatures via Public Key Cryptosystems

Properties

Anyone can verify a signature since anyone can encrypt under Alice’s
public key.

In order to forge a signature of a particular message M, Eve would have to
be able to do decryption under Alice’s public key.
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Signatures via Public Key Cryptosystems

Signatures With Secrecy Using PKC

Alice wishes to send an authenticated secret message M to Bob.

She sends (A, EB(S , M)) where A and S are as before and EB denotes
encryption under Bob’s public key.

To verify S , Bob decrypts EB(S , M) and then verifies S as before.
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Security of Signatures

Security of Signatures

Definition 4 (Existential forgery)

A signature scheme is susceptible to existential forgery if an adversary can
forge a valid signature of another entity for at least one message.

Goals of the attacker:

total break — recover the private key

universal forgery — can generate a signature for any message

selective forgery — can generate a signature for some message of
choice

existential forgery — can generate a signature for at least one
message

Mike Jacobson (University of Calgary) Computer Science 418 Week 12 9 / 32

Security of Signatures

Existential Forgery on PKC-Generated Signatures

Consider generating a signature S to a message M using a
signature-capable PKC as described above.

Eve can create a forged signature from Alice as follows:

1 Selects random S ∈M,

2 Computes M = EA(S),

3 Sends (A, M, S) to Bob.

Bob computes EA(S) which is M and thus accepts the “signature” S to
“message” M.

Usually foiled by language redundancy, but may be a problem is M is
random (eg. a cryptographic key).
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Security of Signatures

Preventing Existential Forgery

Solution:

Alice sends (A, M, S = DA(H(M))) where H is a public pre-image
resistant hash function on M.

Bob computes EA(S) and H(M), and accepts the signature if and
only if they match.

Foils the attack:

if Eve generates random S , then she would have to find X such that
H(X ) = M = EA(S) (i.e. a pre-image under H), and send (A, X , A)
to Bob.

Bob then computes DA(H(X )) and compares with L.

Not computationally feasible if H is pre-image resistant.
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Security of Signatures

Existential Forgery if H is not Collision Resistant

Suppose Alice uses a pre-image resistant hash function as described above
to sign her messages.

If H is not collision resistant, Eve can forge a signature as follows:

1 Find M, M ′ ∈M with M 6= M ′ and H(M) = H(M ′) (a collision)

2 If S is the signature to M, then S is also the signature to M ′, as
EA(S) = H(M) = H(M ′)

Note that if Eve intercepts (A, M, S), then she could also find a weak
collision M ′ with H(M) = H(M ′).
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Security of Signatures

Summary on Signatures via PKC

Use a secure signature capable PKC and a cryptographic (i.e. collision
resistant) hash function H (security depends on both).

Signing H(M) instead of M also results in faster signature generation if M
is long.

H should be a fixed part of the signature protocol, so Eve cannot just
substitute H with a cryptographically weak hash function.
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Security of Signatures Provable Security of Signatures

GMR-Security

In practice, signature schemes must be resistant to active attacks. We
need the equivalent of IND-CCA2 for signatures.

Definition 5 (GMR-security)

A signature scheme is said to be GMR-secure if it is existentially
unforgeable by a computationally bounded adversary who can mount an
adaptive chosen-message attack.

In other words, an adversary who can obtain signatures of any messages of
her own choosing from the legitimate signer is unable to produce a valid
signature of any new message (for which it has not already requested and
obtained a signature) in polynomial time.

GMR stands for Goldwasser-Micali-Rivest.
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Security of Signatures Provable Security of Signatures

GMR-Secure Versions of RSA

Example 6

RSA-PSS (Probabilistic Signature Scheme), a digital signature analogue of
OAEP, is GMR-secure in the random oracle model (ROM) assuming that
the RSA problem (computing eth roots modulo n) is hard.

Example 7

RSA with full-domain hash — use RSA signatures as usual, signing H(M),
but select the hash function H such that 0 ≤ H(M) < n (n is the RSA
modulus) for all messages M.

Called full-domain because the messages signed are taken from the
entire range of possible RSA blocks as opposed to a smaller subrange.

Also GMR-secure under same assumption as above.
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DLP-Based Signature Schemes

Other Signature Schemes

Examples of non-PKC-based signature schemes:

ElGamal — randomized, security based on DLP

Digital Signature Algorithm — variation of ElGamal with short
signatures

Feige-Fiat-Shamir — security based on computing square roots
modulo pq

Guillou-Quisquater — security based on the RSA problem of
computing e-th roots modulo pq

We’ll cover the first two here.
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DLP-Based Signature Schemes

Solving General Linear Congruences

We need to solve a general linear congruence of the form

ax ≡ b (mod m)

for x ∈ Z∗m, with m ∈ N and a ∈ Z∗m.

We already saw how to do this for b = 1; that’s just finding modular
inverses.

To solve ax ≡ b (mod m) for x : first solve az ≡ 1 (mod n) for z using
the Extended Euclidean Algorithm. Then x ≡ bz (mod n) as

ax ≡ a(bz) ≡ (az)b ≡ 1 · b ≡ b (mod n) .
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DLP-Based Signature Schemes

The El Gamal Signature Scheme

The El Gamal signature scheme is a variation of the El Gamal PKC (same
1985 paper). Security considerations are the same.

A produces her public and private keys as follows:

1 Selects a large prime p and a primitive root g of p.

2 Randomly selects x such that 0 < x < p − 1 and computes y ≡ g x

(mod p).

Public key: {p, g , y}
Private key: {x}

A also fixes a public cryptographic hash function H : {0, 1}∗ 7→ Zp−1.
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DLP-Based Signature Schemes

Signing and Verifying

A signs a message M ∈ {0, 1}∗ as follows:

1 Selects a random integer k ∈ Z∗p−1.

2 Computes r ≡ gk (mod p), 0 ≤ r < p.

3 Solves ks ≡ [H(M‖r)− xr ] (mod p − 1) for s ∈ Z∗p−1

4 A’s signature is the pair (r , s).

B verifies A’s signature (r , s) as follows:

1 Obtains A’s authentic public key {p, g , y}.
2 Verifies that 1 ≤ r < p; if not, reject.

3 Computes v1 ≡ y r r s (mod p) and v2 ≡ gH(M‖r) (mod p).

4 Accepts the signature if and only if v1 = v2.
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DLP-Based Signature Schemes

Proof of Correctness

Proof of correctness.

Note that ks + rx ≡ H(M, r) (mod p − 1). If the signature (r , s) to
message M is valid, then

v1 ≡ y r r s

≡ (g x)r (gk)s)

≡ g xr+ks

= gH(M‖r)

≡ v2 (mod p) .
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DLP-Based Signature Schemes

Example

Let p = 467, and set g = 2 which is a primitive root modulo 467.

Choose the secret key x = 127.

Using binary exponentiation, one obtains y ≡ 2127 ≡ 132 (mod 467).

So consider an ElGamal user Alice with

public key {467, 2, 132}
private key 127.
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DLP-Based Signature Schemes

Example: signature generation

Suppose Alice wishes to sign the message M = “Hi there”.

She selects k = 213; note that gcd(213, 466) = 1.

Binary exponentiation yields r ≡ 2213 ≡ 29 (mod 467).

Suppose our hash function yields H(“Hi there”‖29) = 100.

Alice needs to solve

123s ≡ 100− 127 · 29 ≡ 145 (mod 466) .

First solve 123z ≡ 1 (mod 466) for z using the Extended Euclidean
Algorithm, obtaining z ≡ 431 (mod 466).

Then s ≡ 145 · 431 ≡ 51 (mod 466).

The signature to “Hi there” is (r , s) = (29, 51).
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DLP-Based Signature Schemes

Example: verification

To verify this signature, first note that r = 29 < 467. Then compute

v1 ≡ 13229 · 2951 ≡ 189 (mod 467)

and v2 ≡ 2100 ≡ 189 (mod 467). So v1 = v2 = 189.

Mike Jacobson (University of Calgary) Computer Science 418 Week 12 23 / 32

DLP-Based Signature Schemes

Security of ElGamal Signatures

GMR-secure in the ROM assuming that H takes on random values and
computing discrete logarithms modulo p is hard.

Formally, one shows that the DLP reduces to existential forgery,
i.e. that an algorithm for producing existential forgeries can be used
to solve the DLP.

If Step 2 of the verification is omitted (verifying that r < p), a universal
forgery attack is possible.

More exactly, if an attacker intercepts a signature (r , s) to a message
m, he can forge a signature (R, S) to an arbitrary message M.

The resulting R satisfies 0 ≤ R ≤ p(p − 1).
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DLP-Based Signature Schemes

Security of ElGamal Signatures, cont.

The public parameter g must be chosen verifiably at random (eg. publish
PRNG, seed, and algorithm used) in order to ensure that g is a primitive
root of p

If the same value of k is used to sign two messages, the private key x can
be computed with high probability.
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DLP-Based Signature Schemes

The Digital Signature Algorithm (DSA)

Invented by NIST in 1991 and adapted as the Digital Signature Standard
(DSS) in Dec. 1994.

Variation of El Gamal signature scheme, with similar security
characteristics, but much shorter signatures.
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DLP-Based Signature Schemes

DSA Setup

A produces her public and private keys as follows:

1 Selects a 512-bit prime p and a 160-bit prime q such that q | p − 1.

2 Selects a primitive root g of p.

3 Computes h ≡ g (p−1)/q (mod p), 0 < h < p. Note that hq ≡ 1
(mod p) by Fermat’s theorem, and if a ≡ b (mod q), then ha ≡ hb

(mod p).

4 Randomly selects x ∈ Z with 0 < x < q and computes y ≡ hx

(mod p)

Public key: {p, q, h, y} (4 · 512 = 2048 bits)
Private key: {x} (160 bits)

DSA also uses a cryptographically secure hash function H : {0, 1}∗ → Zq.
The DSS specifies that SHA-1 be used.
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DLP-Based Signature Schemes

Signing and Verifying

A signs message M ∈ {0, 1}∗ as follows:

1 Selects a random integer k with 0 < k < q.

2 Computes r ≡
(
hk (mod p)

)
(mod q), 0 < r < q.

3 Solves ks ≡ H(M) + xr (mod q). If s = 0, go back to step 1 (this
happens with negligible probability).

4 A’s signature is the pair {r , s} (320 bits, as opposed to 1024)

B verifies A’s signature as follows:

1 Obtains A’s authentic public key {p, q, h, y}.
2 Computes the inverse s∗ ∈ Z∗q of s (mod q).

3 Computes u1 ≡ H(M)s∗ (mod q) , u2 ≡ rs∗ (mod q), and
v ≡

(
hu1yu2 (mod p)

)
(mod q), 0 < v < q.

4 Accepts the signature (r , s) if and only if v = r .
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DLP-Based Signature Schemes

Proof of Correctness

Proof of Correctness.

Note that k ≡ (H(M) + x)s∗ (mod q) and

v ≡ hu1yu2

≡ hH(M)s∗y rs∗

≡ hH(M)s∗hxrs∗

≡ h(H(M)+xr)s∗

≡ hk ≡ r (mod p) .

Now v and r are integers strictly between 0 and q that are congruent
modulo the much larger modulus p. Hence v = r .
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DLP-Based Signature Schemes

Efficiency of DSA

Small signature (320 bits, much smaller than El Gamal) but the
computations are done modulo a 512-bit prime.

Congruence in step 3 of signature generation has a “+” whereas the one
in El Gamal has a “−”.

The DSA verification procedure is more efficient than the way verification
was described for ElGamal

requires only two modular exponentiations in step 2 as opposed to
three in ElGamal.

However, the one in ElGamal can be rewritten in the same efficient way

check if ry s∗r ≡ g s∗H(M‖r) (mod p) where s∗ is the inverse of s
(mod p − 1).
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DLP-Based Signature Schemes

Parameter Sizes for Public-Key Cryptography

1024-bit RSA is estimated to provide 80 bits of security

should be paired with a 160-bit hash function and an 80-bit block
cipher (so that all three components equally strong).

Security levels and parameter/key sizes (NIST recommendations):

Security level (in bits) 80 112 128 192 256

Hash size (in bits) 160 224 256 384 512

RSA modulus (in bits) 1024 2048 3072 7680 15360
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DLP-Based Signature Schemes

Security of DSA

Based on the belief that extracting discrete logs modulo q is hard (seems
reasonable).

Proof of GMR-security does not hold, because H(M) is signed as opposed
to H(M‖r) (reduction to DLP requires that the forger be forced to use the
same r for two signatures)

More information: “Another look at provable security” by Koblitz and
Menezes, J. Cryptology 2007; see “external links” page.
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