Computer Science 418
 Digital Signatures

Mike Jacobson

Department of Computer Science
University of Calgary
Week 12
(1) Digital SignaturesSignatures via Public Key CryptosystemsSecurity of Signatures

- Provable Security of SignaturesDLP-Based Signature Schemes

Digital Signatures
Digital Signatures: Definition

Data origin authentication is usually achieved by means of a signature, i.e. a means by which the recipient of a message can authenticate the identity of the sender.

Definition 1 (Digital signature)

A means for data authentication that should have two properties:
(1) Only the sender can produce his signature.
(2) Anyone should be easily able to verify the validity of the signature.

Digital Signatures

Digital Signatures: Observations

Observations:

- Properties 1 and 2 provide non-repudiation: if there is a dispute over a signature (a receiver claims that the sender signed the message, whereas the signer claims he didn't), anyone can resolve the dispute. For ordinary written signatures, one might need a hand-writing expert.
- Signatures are different from MACs:
- both sender and receiver can generate a MAC, whereas only the sender can generate a signature.
- only sender and receiver can verify a MAC, whereas anyone can verify a signature.
- In order to prevent replay attacks (replay a signed message later), it may be necessary to include a time stamp or sequence numbers in the signature.

Anyone can verify a signature since anyone can encrypt under Alice's public key.

In order to forge a signature of a particular message M, Eve would have to be able to do decryption under Alice's public key.

Signatures Without Secrecy Using PKC
Alice wishes to send a non-secret message M to Bob along with a signature S that authenticates M to Bob.

She sends (A, M, S) where

- A is her identity,
- M is the message,
- $S=D_{A}(M)$ is the "decryption" of M under her private key.

To verify S, Bob

- checks A and looks up Alice's public key,
- computes the "encryption" $E_{A}(S)$ of S under Alice's public key,
- accepts the signature if and only if $M=E_{A}(S)$

Note that $E_{A}(S)=E_{A}\left(D_{A}(M)\right)=M$ if everything was done correctly.

Signatures via Public Key Cryptosystems

Properties

Definition 2 (Signature capability)

A PKC is signature capable if $\mathcal{M}=\mathcal{C}$ and $E_{K_{1}}\left(D_{K_{2}}(C)\right)=C$ for all $C \in \mathcal{C}$.

So in a signature capable PKC, decryptions are right and left inverses (i.e. honest-to-goodness inverses) of encryptions.

Example 3

RSA has signature capability. EIGamal and Goldwasser-Micali do not.
Signatures With Secrecy Using PKC

She sends $\left(A, E_{B}(S, M)\right)$ where A and S are as before and E_{B} denotes encryption under Bob's public key.

To verify S, Bob decrypts $E_{B}(S, M)$ and then verifies S as before.

Definition 4 (Existential forgery)

A signature scheme is susceptible to existential forgery if an adversary can forge a valid signature of another entity for at least one message.

Goals of the attacker:

- total break - recover the private key
- universal forgery - can generate a signature for any message
- selective forgery - can generate a signature for some message of choice
- existential forgery - can generate a signature for at least one message

Preventing Existential Forgery

Solution:

- Alice sends $\left(A, M, S=D_{A}(H(M))\right)$ where H is a public pre-image resistant hash function on \mathcal{M}.
- Bob computes $E_{A}(S)$ and $H(M)$, and accepts the signature if and only if they match.

Foils the attack:

- if Eve generates random S, then she would have to find X such that $H(X)=M=E_{A}(S)$ (i.e. a pre-image under H), and send (A, X, A) to Bob.

Bob then computes $D_{A}(H(X))$ and compares with L.

- Not computationally feasible if H is pre-image resistant.

Consider generating a signature S to a message M using a signature-capable PKC as described above.

Eve can create a forged signature from Alice as follows:
(1) Selects random $S \in \mathcal{M}$,
(2) Computes $M=E_{A}(S)$,
(0) Sends (A, M, S) to Bob.

Bob computes $E_{A}(S)$ which is M and thus accepts the "signature" S to "message" M.

Usually foiled by language redundancy, but may be a problem is M is random (eg. a cryptographic key).

Existential Forgery if H is not Collision Resistant

Suppose Alice uses a pre-image resistant hash function as described above to sign her messages.

If H is not collision resistant, Eve can forge a signature as follows:
(1) Find $M, M^{\prime} \in \mathcal{M}$ with $M \neq M^{\prime}$ and $H(M)=H\left(M^{\prime}\right)$ (a collision)
(2) If S is the signature to M, then S is also the signature to M^{\prime}, as $E_{A}(S)=H(M)=H\left(M^{\prime}\right)$

Note that if Eve intercepts (A, M, S), then she could also find a weak collision M^{\prime} with $H(M)=H\left(M^{\prime}\right)$.

In practice, signature schemes must be resistant to active attacks. We need the equivalent of IND-CCA2 for signatures.

Definition 5 (GMR-security)

A signature scheme is said to be GMR-secure if it is existentially unforgeable by a computationally bounded adversary who can mount an adaptive chosen-message attack.

In other words, an adversary who can obtain signatures of any messages of her own choosing from the legitimate signer is unable to produce a valid signature of any new message (for which it has not already requested and obtained a signature) in polynomial time.

GMR stands for Goldwasser-Micali-Rivest.

Example 6

RSA-PSS (Probabilistic Signature Scheme), a digital signature analogue of OAEP, is GMR-secure in the random oracle model (ROM) assuming that the RSA problem (computing eth roots modulo n) is hard.

Example 7

RSA with full-domain hash - use RSA signatures as usual, signing $H(M)$, but select the hash function H such that $0 \leq H(M)<n$ (n is the RSA modulus) for all messages M.

- Called full-domain because the messages signed are taken from the entire range of possible RSA blocks as opposed to a smaller subrange.
- Also GMR-secure under same assumption as above.

We need to solve a general linear congruence of the form

$$
a x \equiv b \quad(\bmod m)
$$

for $x \in \mathbb{Z}_{m}^{*}$, with $m \in \mathbb{N}$ and $a \in \mathbb{Z}_{m}^{*}$.
We already saw how to do this for $b=1$; that's just finding modular inverses.

To solve $a x \equiv b(\bmod m)$ for x : first solve $a z \equiv 1(\bmod n)$ for z using the Extended Euclidean Algorithm. Then $x \equiv b z(\bmod n)$ as

$$
a x \equiv a(b z) \equiv(a z) b \equiv 1 \cdot b \equiv b \quad(\bmod n) .
$$

A signs a message $M \in\{0,1\}^{*}$ as follows:
(1) Selects a random integer $k \in \mathbb{Z}_{p-1}^{*}$.
(2) Computes $r \equiv g^{k}(\bmod p), 0 \leq r<p$.
(3) Solves $k s \equiv[H(M \| r)-x r](\bmod p-1)$ for $s \in \mathbb{Z}_{p-1}^{*}$
(1) A's signature is the pair (r, s).

B verifies A's signature (r, s) as follows:
(1) Obtains A's authentic public key $\{p, g, y\}$.
(2) Verifies that $1 \leq r<p$; if not, reject.
(3) Computes $v_{1} \equiv y^{r} r^{s}(\bmod p)$ and $v_{2} \equiv g^{H(M \| r)}(\bmod p)$.
(1) Accepts the signature if and only if $v_{1}=v_{2}$.

The El Gamal signature scheme is a variation of the EI Gamal PKC (same 1985 paper). Security considerations are the same.

A produces her public and private keys as follows:
(1) Selects a large prime p and a primitive root g of p.
(2) Randomly selects x such that $0<x<p-1$ and computes $y \equiv g^{x}$ $(\bmod p)$.

Public key: $\{p, g, y\}$
Private key: $\{x\}$
A also fixes a public cryptographic hash function $H:\{0,1\}^{*} \mapsto \mathbb{Z}_{p-1}$.

Proof of Correctness

Proof of correctness.

Note that $k s+r x \equiv H(M, r)(\bmod p-1)$. If the signature (r, s) to message M is valid, then

$$
\begin{aligned}
v_{1} & \equiv y^{r} r^{s} \\
& \left.\equiv\left(g^{x}\right)^{r}\left(g^{k}\right)^{s}\right) \\
& \equiv g^{x r+k s} \\
& =g^{H(M \| r)} \\
& \equiv v_{2}(\bmod p) .
\end{aligned}
$$

Example

Let $p=467$, and set $g=2$ which is a primitive root modulo 467 .

- Choose the secret key $x=127$.
- Using binary exponentiation, one obtains $y \equiv 2^{127} \equiv 132(\bmod 467)$.

So consider an EIGamal user Alice with

- public key $\{467,2,132\}$
- private key 127 .

DLP-Based Signature Schemes

Example: verification

To verify this signature, first note that $r=29<467$. Then compute

$$
v_{1} \equiv 132^{29} \cdot 29^{51} \equiv 189 \quad(\bmod 467)
$$

and $v_{2} \equiv 2^{100} \equiv 189(\bmod 467)$. So $v_{1}=v_{2}=189$.

Security of ElGamal Signatures
 DLP-Based Signature Schemes

Example: signature generation

Suppose Alice wishes to sign the message $M=$ "Hi there".

- She selects $k=213$; note that $\operatorname{gcd}(213,466)=1$.
- Binary exponentiation yields $r \equiv 2^{213} \equiv 29(\bmod 467)$.

Suppose our hash function yields $H($ "Hi there" ||29) $=100$.

- Alice needs to solve

$$
123 s \equiv 100-127 \cdot 29 \equiv 145 \quad(\bmod 466) .
$$

- First solve $123 z \equiv 1(\bmod 466)$ for z using the Extended Euclidean Algorithm, obtaining $z \equiv 431(\bmod 466)$.
- Then $s \equiv 145 \cdot 431 \equiv 51(\bmod 466)$.
- The signature to "Hi there" is $(r, s)=(29,51)$.

GMR-secure in the ROM assuming that H takes on random values and computing discrete logarithms modulo p is hard.

- Formally, one shows that the DLP reduces to existential forgery, i.e. that an algorithm for producing existential forgeries can be used to solve the DLP.

If Step 2 of the verification is omitted (verifying that $r<p$), a universal forgery attack is possible.

- More exactly, if an attacker intercepts a signature (r, s) to a message m, he can forge a signature (R, S) to an arbitrary message M.
- The resulting R satisfies $0 \leq R \leq p(p-1)$.

The public parameter g must be chosen verifiably at random (eg. publish PRNG, seed, and algorithm used) in order to ensure that g is a primitive root of p

If the same value of k is used to sign two messages, the private key x can be computed with high probability.

A produces her public and private keys as follows:
(1) Selects a 512 -bit prime p and a 160 -bit prime q such that $q \mid p-1$.
(2) Selects a primitive root g of p.
(3) Computes $h \equiv g^{(p-1) / q}(\bmod p), 0<h<p$. Note that $h^{q} \equiv 1$ $(\bmod p)$ by Fermat's theorem, and if $a \equiv b(\bmod q)$, then $h^{a} \equiv h^{b}$ $(\bmod p)$.
(9) Randomly selects $x \in \mathbb{Z}$ with $0<x<q$ and computes $y \equiv h^{x}$ $(\bmod p)$

Public key: $\{p, q, h, y\}(4 \cdot 512=2048$ bits $)$
Private key: $\{x\}$ (160 bits)
DSA also uses a cryptographically secure hash function $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}$. The DSS specifies that SHA-1 be used.

Proof of Correctness

Proof of Correctness

$$
\begin{aligned}
& \text { Note that } k \equiv(H(M)+x) s^{*}(\bmod q) \text { and } \\
& \qquad \begin{aligned}
v & \equiv h^{u_{1}} y^{u_{2}} \\
& \equiv h^{H(M) s^{*}} y^{r s^{*}} \\
& \equiv h^{H(M) s^{*}} h^{x r s^{*}} \\
& \equiv h^{(H(M)+x r) s^{*}} \\
& \equiv h^{k} \equiv r(\bmod p) .
\end{aligned}
\end{aligned}
$$

Now v and r are integers strictly between 0 and q that are congruent modulo the much larger modulus p. Hence $v=r$.

Parameter Sizes for Public-Key Cryptography

1024-bit RSA is estimated to provide 80 bits of security

- should be paired with a 160 -bit hash function and an 80 -bit block cipher (so that all three components equally strong).

Security levels and parameter/key sizes (NIST recommendations):

Security level (in bits)	80	112	128	192	256
Hash size (in bits)	160	224	256	384	512
RSA modulus (in bits)	1024	2048	3072	7680	15360

Efficiency of DSA

Small signature (320 bits, much smaller than El Gamal) but the computations are done modulo a 512-bit prime.

Congruence in step 3 of signature generation has a " + " whereas the one in El Gamal has a "-".

The DSA verification procedure is more efficient than the way verification was described for EIGamal

- requires only two modular exponentiations in step 2 as opposed to three in ElGamal.
However, the one in ElGamal can be rewritten in the same efficient way
- check if $r y^{s^{*} r} \equiv g^{s^{*} H(M \| r)}(\bmod p)$ where s^{*} is the inverse of s $(\bmod p-1)$.

Security of DSA

Based on the belief that extracting discrete logs modulo q is hard (seems reasonable).

Proof of GMR-security does not hold, because $H(M)$ is signed as opposed to $H(M \| r)$ (reduction to DLP requires that the forger be forced to use the same r for two signatures)

More information: "Another look at provable security" by Koblitz and Menezes, J. Cryptology 2007; see "external links" page.

