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Key Management

Authenticity of Keys

Secure communication requires proper mechanisms for managing keys and
ensuring their authenticity.

Mechanisms for ensuring authenticity of keys:

A trusted third party

A key distribution center (session keys)
A certification authority (public keys)

Peer authentication (e.g. PGP secure e-mail)

Identity-based cryptography: your ID is your public key

The vast majority of key distribution systems involve a trusted authority
to ensure authenticity of keys.
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Key Management Symmetric Key Distribution

Symmetric Key Distribution

Symmetric schemes require both parties to share a common, secret key.

Possible distribution mechanisms:

A selects a key and physically delivers to B. Secure, but cumbersome.

Third party selects and physically delivers key to A and B. Also
secure, but cumbersome.

A and B can use a previous key to encrypt a new key. If one key is
compromised, all subsequent keys are compromised.

A commonly-trusted third party called a key distribution center
(KDC) can relay the key between A and B via encrypted links
(commonly used solution).
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Key Management Symmetric Key Distribution

Key Distribution Centres

Idea:

Each user holds a shared symmetric master key with the KDC

Master key is used for distributing one-time session keys

Encryption is performed with a session key that is destroyed at the
end of the session

Advantages:

Far fewer long-term keys than if each pair of entities holds a shared
long-term key

Compromise of a session key does not affect master key nor other
sessions
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Key Management Symmetric Key Distribution

Key Distribution Centres: Issues

Issues:

Hierarchies of KDC’s required for large networks, must trust each
other

Session key lifetimes should be limited for greater security

All keys and entities (users and KDCs) must be authenticated (more
later)
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Key Management Public-Key Solutions

PKC Solutions

There are three main contributions in PKC:

Digital signatures — for data origin authentication and
non-repudiation

Key agreement protocols — both parties contribute to the
generation of a session key (eg. Diffie-Hellman)

Key transport via hybrid encryption — party A generates a session
key, encrypts and sends to B using a PKC (B has no control over the
session key)

Main problem — user’s public keys must be authenticated in order to
prevent active attacks such as man-in-the-middle and impersonation.
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Key Management Public-Key Solutions

Public-Key Distribution, I

1 Point-to-point delivery over a trusted channel such as personal
exchange, registered mail, courier, etc.

Problems: slow, inconvenient, potentially expensive.

2 Direct access to a trusted public file (public-key repository).

Advantage: no user interaction.

Problems:

The repository must be secure and tamper-proof (otherwise
impersonation is still possible),
Users must have a secure channel (see Point 1) to initially register their
public keys.
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Key Management Public-Key Solutions

Public Key Distribution, II

3 An on-line trusted server dispenses public keys on request. The
server signs the transmitted keys with its private key.

Problems:

All users must know the server’s public verification key,
The trusted server must be online and may become a bottleneck,
A communication link must be established with both the server and the
intended recipient,
The server’s public-key database may still be subject to tampering.

4 Off-line server and certificates (certification authorities).

5 Use of systems implicitly guaranteeing authenticity of public
parameters (ID-based systems).

Option 5 is feasible, but has its own problems. We will focus on Option 4.
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Key Management Public-Key Solutions

Public-Key Infrastructures

Definition 1 (Public-Key Infrastructure (PKI))

A set of techniques and procedures supporting authenticated key
management for PKC. Specifically, a PKI supports:

initialization of system users

generation, distribution/authentication, and installation of public and
private keys

controlling the use of keys (eg. life cycles of session keys, public and
private keys)

update, revocation, and destruction of keys (eg. managing
compromise of private keys)

storage, backup/recovery, and archival of keys (eg. maintaining an
audit trail)
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Key Management Public-Key Solutions

Public-Key Certificates

Definition 2 (Public-Key Certificate)

A data structure consisting of a data part (containing at least the user ID
and the corresponding public key) and a signature part consisting of the
digital signature of a certification authority over the data part.

A certificate should also include information such as:

A time-stamp indicating the currency of the certificate (to facilitate
key changing and revocation)

Additional information about the key (key generation algorithm,
intended use)

Key status (for revocation)

Signature verification information (certification authority’s name,
signature algorithm used)
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Key Management Public-Key Solutions

Certification Authorities

Definition 3 (Certification Authority (CA))

A trusted third party whose signature on a certificate vouches for the
authenticity of the public key bound to the subject entity.

Idea: CA issues public key certificates that may be verified off-line. Users
may exchange authentic public keys without having to contact the CA.

Example 1

X.509 is an IETF (Internet Engineering Task Force) standard for
certificate-based authentication schemes (used in S/MIME, IPsec, SSL).
VeriSign is an online CA service that uses X.509 certificates.
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Key Management Public-Key Solutions

Obtaining Public Keys

User B uses a public-key certificate to obtain the authentic public key of
user A as follows:

1 Acquires the authentic public key of the CA (done only once, eg.
pre-loaded in web browsers)

2 Acquires a public key certificate corresponding to A over an insecure
channel such as a central database, or even directly from A

3 Verify the authenticity of the public key:

(a) Verifies the currency of the certificate using the time-stamp
(b) Verifies the signature on A’s certificate using CA’s public key
(c) Verifies that the certificate has not been revoked

4 If all the checks succeed, accepts the public key in the certificate as
A’s public key
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Key Management Public-Key Solutions

Requirements for the Scheme

1 Any participant can read a certificate to determine the name and
public key

2 Any participant can verify that the certificate originated from the CA
and is not counterfeit

3 Only the CA can create and update certificates

4 Any participant can verify the currency of the certificate

Main Issue / Problem: CA has to be trustworthy!

not bad for small, closed deployment

national or international level?
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Key Management Public-Key Solutions

User Registration

Users must register with the CA in a secure manner (typically in person):

The CA’s public key (required for certificate verification) may be
obtained at that time

CA may generate user keys, or certify owner-generated keys (possibly
without user revealing the private key)

May store keys for backup

CA must verify the binding between the public and private keys.
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Key Management Public-Key Solutions

CA Hierarchies

Large networks have hierarchies of CAs:

Tree hierarchy — each node represents a principal whose public key is
certified by its parent

Leaf nodes — end users

Non-leaf nodes — CAs at various levels and domains (e.g. country
level has domains

industry (.com)
education (.edu)
government (.gov)
other organization (.org, .net)

Two end users can obtain authentic public keys by finding a common
ancestor node in the hierarchy
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Key Management Public-Key Solutions

Certificate Revocation

Certificates may need to be revoked before they expire, for the following
reasons:

A user’s private key is compromised

A user is no longer certified by his current CA

A CA’s certificate is assumed to be compromised

Mechanisms for revocation:

CA maintains a certificate revocation list (CRL), available online,
signed by the CA

Alternatively, incremental lists known as Delta revocation lists are
disseminated through the hierarchy

CA must time-stamp revocations — signatures issued prior to
revocation date should be considered valid
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Key Management Public-Key Solutions

Identity Based Cryptography

Motivation: an ideal e-mail system in which knowledge of a person’s
name (or e-mail address) alone is sufficient to

send mail which can be read by that person only (secure),

allow verification of signatures that could have only been produced by
that person.

Idea (Shamir 1984): bind public keys directly to a user’s identity

Definition 4 (Identity-based cryptosystem)

A PKC in which an entity’s public identification information (unique
name) plays the role of its public key.
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Key Management Public-Key Solutions

Issues

Advantages: need for public key authentication is eliminated.

Users need not exchange keys

Public directories (files of public keys or certificates) need not be kept

If the wrong public user data is used, the cryptographic transformations
fail.

Problem: how are the private keys generated? Recall that in order for a
PKC to be secure, it must be computationally infeasible to compute the
private key given the public key!
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Key Management Public-Key Solutions

Private Key Generation

Answer:

The system requires another piece of trap-door information: a master
key that can be used to compute the private keys.

The unique name (i.e. the public key) is used by a trusted authority to
compute the entity’s corresponding private key, using the master key.

Advantage: Trusted authority is only required during the set-up phase (to
compute private keys)

Disadvantage: Users must trust the authority completely (it knows all
the private keys)
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Key Management Public-Key Solutions

Typical Application

Users send encrypted messages using a public key derived from the
recipient’s ID and a key validity period (time stamp), using some
publicly available function (e.g. converting concatenation of these two
strings to appropriate length integer).

Recipient requests the private key corresponding to a particular
validity period from trusted authority

Incorporating a validity period into the public keys gives keys a lifetime,
mitigating the problem of compromised keys (i.e. revocation).

Extreme solution: use a different public key for each message (unique time
stamp instead of validity period).
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Key Management Public-Key Solutions

Comparison to PKI

Both systems require a trusted third party. In ID-based cryptosystems, this
authority always has access to the private keys.

In PKI, senders of messages / verifiers of signatures must obtain public
keys of other users. In ID-based crypto, recipients / signers must obtain
their own private keys.
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Key Management Public-Key Solutions

Examples of ID Based Schemes

Signature Schemes

Shamir (CRYPTO 1984) — based on RSA

Feige, Fiat, and Shamir (J. Cryptology 1998) — based on computing
square roots modulo pq (p and q large primes)

Encryption Schemes (good deal harder!)

Boneh and Franklin (CRYPTO 2001) — uses the Weil pairing on
elliptic curves.

(first practical ID based encryption scheme)
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Authentication

Overview

Today, authentication is arguably the most important application of
cryptography. Three main classifications:

Data-origin authentication (digital signatures) — covered previously

Entity authentication (client-server, user-host, process-host)

Authenticated key establishment

KDCs and PKIs make up a general key authentication framework.

We still need protocols for ensuring entity authentication within these
frameworks.
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Authentication

Authentication Protocols and Nonces

Definition 5 (Authentication protocol)

A sequence of one or more information exchanges used to convince parties
of each others’ identity.

Authentication may be one-way or mutual. Key issues:

Confidentiality (e.g. to protect session keys)

Timeliness (freshness) — to prevent replay attacks where a signed
message is copied and later resent

Two means to ensure freshness: nonces and time stamps.

Definition 6 (Nonce)

A number or bit string that is used only once (usually in a particular
message or protocol).
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Authentication

Standardized Authentication Protocols

ISO (International Organization for Standardization) and IEC
(International Electrotechnical Commission) both standardized
authentication primitives.

Notation:

A, B — identities of users A and B, respectively
M — identity of a masquerader (impersonator)
T — identity of a trusted authority
KXY — session key shared by entities X and Y
EKXY

— symmetric encryption using key KXY

TSX — time stamp generated by entity X
NX — nonce generated by entity X
certX — public key certificate of entity X
sigX — public key signature generated by entity X
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Authentication

ISO One-Pass Unilateral Authentication

Symmetric key version

1 A→ B : EKAB
(TSA, B)

Note: The primary function of EK is to provide data integrity, not secrecy.

Example problem: cannot detect rearrangement of plaintext blocks in
ECB mode for example.

Better, use a MAC:

1 A→ B : TSA, B, MACKAB
(TSA, B)

Public key version

1 A→ B : certA, TSA, B, sigA(TSA, B)
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Authentication

Use and Properties

Timeliness is assured via the time stamp TSA that cryptographically
integrates the current time into the message

B decrypts/verfies and authenticates A if the time stamp TSA is within an
acceptable range

Inclusion of B binds this run of the protocol to a session in which A is
authenticating to B (as opposed to someone else)

A’s involvement is guaranteed if B can successfully decrypt the message
(B cold also check, for example, that the message came from an IP
address known to belong to A)
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Authentication

Advantages and Disadvantages

Advantage: no real-time interaction between A and B

Disadvantage: clocks must be synchronized (and thus securely
maintained). Alternatively, sequence numbers could be used, but this still
requires synchronization
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Authentication

ISO Two-Pass Unilateral Authentication

Symmetric key version

1 B’s challenge: B → A : B, NB

2 A’s response: A→ B : MACKAB
(NB , B)

Public key version

1 B’s challenge: B → A : B, NB

2 A’s response: A→ B : certA, NA, B, sigA(NA, NB , B)
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Authentication

Use and Properties

Timeliness is assured interactively via a challenge-response mechanism

B accepts A’s response if upon decryption/verification, he successfully
extracts his nonce NB

Intuition: A’s cryptographic operation must have taken place after her
receipt of B’s nonce

Public key version: By including NA, A ensures that she does not
inadvertently sign a message of B’s preparation (prevents chosen message
attacks)
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Authentication

ISO Three-pass mutual authentication

Symmetric key version

1 B → A : B, NB

2 A→ B : NA, MACKAB
(NA, NB , B)

3 B → A : MACKAB
(NB , NA, A)

Public key version

1 B → A : B, NB

2 A→ B : certA, NA, B, sigA(NA, NB , B)

3 B → A : certB , A, sigB(NB , NA, A)
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Authentication

Use and Properties

Presence of NB in the encrypted messages/signatures binds these
messages to the same protocol execution.

The original version had B select a second nonce N ′B . This simply
represents two interleaved unilateral protocols and succumbs to an
interleaving attack with the result that:

A believes B initiated the run and accepts B’s identity

B is still awaiting termination of the run
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Authentication

Interleaving Attack

Original Public key version

1 B → A : B, NB

2 A→ B : certA, NA, B, sigA(NA, NB , B)

3 B → A : certB , N′B, A, sigB(N′B, NA, A)

Interleaving Attack (Wiener 1991)

1 M → A : B, NB (M masquerades as B)
2 A→ M : certA, NA, B, sigA(NA, NB , B) (A believes M is B)

1 M → B : A, NA (M executes unilateral protocol with B while
masquerading as A)

2 B → M : certB , N ′
B , A, sigB(N ′

B , NA, A)

3 M → A : certB , N ′B , A, sigB(N ′B , NA, A)
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Authentication

Authenticated Session Key Distribution Via KDC

Needham, Schroeder 1978

Original KDC session key distribution protocol (basis of Kerberos
session key distribution)

Utilizes a challenge-response mechanism and symmetric encryption
(no public key at all)

T plays the role of the KDC; KS is the session key
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Authentication

Needham-Schroeder Protocol

Protocol:

1 A→ T : A, B, NA

2 T → A : EKAT

(
KS , B, NA, EKBT

(KS , A)
)

3 A→ B : EKBT
(KS , A)

4 B → A : EKS
(NB)

5 A→ B : EKS
(NB − 1)

Key distribution in steps 1,2,3
Mutual authentication of A and B in steps 4,5
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Authentication

Replay Attack on Needham-Schroeder

Suppose M has compromised a previous session key K ′S and has recorded
message 3 from a previous run:

1 T → A : EKBT
(K ′S , A).

Denning, Sacco (1981) — M impersonates A as follows:

1 M → B : EKBT
(K ′S , A) (replay of old, valid message)

2 B → M : EK ′
S
(NB)

3 M → B : EK ′
S
(NB − 1)

Result:

B accepts K ′S as a valid session key shared with A

M can continue to impersonate A successfully.
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Authentication

Denning’s & Sacco’s Proposed Fix

Uses a time stamp TST generated by T instead of A’s nonce NA:

1 A→ T : A, B

2 T → A : EKAT
(KS , B, TST, EKBT

(KS , A, TST))

3 A→ B : EKBT
(KS , A, TST)

4 B → A : EKS
(NB)

5 A→ B : EKS
(NB − 1)

Good news: replaying message 3 will no longer work, because B will
reject the message if the current time differs greatly from TST .

Bad news: a suppress-replay attack is possible if B’s clock is not
tamper-proof. M proceeds as follows:

Sets B’s clock behind and suppress Message 3

Sends Message 3 when B’s clock corresponds to TST .
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Authentication

Fix — Combination of Nonces and Expiration Times

Let timeB denote the expiration time for KS (determined by B)

1 A→ B : A, NA

2 B → T : B, NB , EKBT
(A, NA, timeB)

3 T → A : EKAT
(B, NA, KS , timeB), EKBT

(A, KS , timeB), NB

4 A→ B : EKBT
(A, KS , timeB), EKS

(NB)

Nonces NA and NB assure both A and B of session timeliness

Only B needs to check timeB , so no clock synchronization needed

In Message 3, the block EKBT
(A, KS , timeB) serves as a ticket that A can

use to re-authenticate with B without interaction with T during the time
limit specified by timeB :

1 A→ B : EKBT
(A, KS , timeB), N ′A

2 B → A : N ′B , EKS
(N ′A)

3 A→ B : EKS
(N ′B)
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Authentication

Authenticated Diffie-Hellman Key Agreement

Diffie 1992

Also referred to as station-to-station (STS) Protocol

Basis of Internet Key Exchange (IKE) protocol component of IPsec

Public parameters:

Large prime p, primitive root g of p

CA’s public key (for certificate validation)
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Authentication

Authenticated Diffie-Hellman: Protocol

Protocol (all “(mod p)”s omitted to avoid clutter):

1 A→ B : g x (A selects random integer x)

2 B → A : g y , certB , EK

(
sigB(g y , g x)

)
. Details:

B selects random integer y
B computes shared key K = g xy

B encrypts his signature on g y and g x using the key K
Upon receipt, A also can also compute K = g xy

3 A→ B : certA, EK

(
sigA(g x , g y )

)
Note: g x and g y also playing the role of nonces to assure freshness
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Authentication

Services Provided

Mutual entity authentication

Mutual authenticated key agreement — each party contributes
randomness to K , each party signs the key agreement material

Mutual key confirmation — both parties encrypt and decrypt with K

Perfect forward secrecy — compromise of one session key K or even one
of the private keys used for signature generation does not compromise
previous session keys as each session key is generated from one-time secrets

Note: original version had a minor flaw, succumbing to a denial of
service attack.
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Authentication

Denial of Service Attack on STS

Lowe 1994: M masquerades as B to A and faces B as himself:
1 A→ M : A, g x (A thinks M is B)

1 M → B : M, g x (M initiates protocol with B as himself)

2 B → M : g y , certB , EK

(
sigB(g y , g x)

)
1 M → A : g y , certB , EK

(
sigB(g y , g x)

)
(A believes this message is from B due to the signature)

3 A→ M : certA, EK

(
sigA(g x , g y )

)
Result:

Denial-of-service against A : believes she shares a session key with B.

B thinks he has participated in an incomplete run with M and is
unaware that A is involved at all.
Different from M simply blocking the last message, in which case B
knows that A was trying to establish the session key.
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Authentication

Fix of DoS Attack on STS

This DoS attack is significant if A is a server, as M can cause many false
user authentications (and subsequent resource allocations).

Simple fix — include IDs of both participants in the signed messages:

1 A→ B : g x

2 B → A : g y , certB , EK

(
sigB(A, B, g y , g x)

)
3 A→ B : certA, EK

(
sigA(A, B, g x , g y )

)
Previous attack fails: if B and M are included in B’s response in
message 2, then M cannot use this message to authenticate to A.

General principle (Abadi and Needham):

If the identity of a principal is essential to the meaning of a
message, it is prudent to mention the principal’s name explicitly
in the message.
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Random Number Generation

Random Numbers in Cryptography

There are many uses of random numbers in cryptography:

nonces in authentication protocols to prevent replay

session keys

public key generation

key stream for a stream cipher

It is critical that these values be

statistically random — independent, uniform distribution

unpredictable — cannot infer future sequence on previous values)
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Random Number Generation

How to Obtain Randomness?

The only source of true randomness is the real world.

Find a regular but random event and monitor. Examples:

radioactive radiation
radio noise (white noise)
thermal noise in diodes
leaky capacitors
mercury discharge tubes, etc.

Need special hardware in general (e.g. radiation counters)

Can be slow and cumbersome

Problems of bias or uneven distribution — have to compensate or use
noisiest bits from each sample). One possibility: pass data through a
cryptographically secure hash function.
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Random Number Generation

Pseudo-Randomness

Published collections of random numbers also exist, but they are too
limited and well-known for most uses.

In practice, one uses pseudo-randomness.

Definition 7 (Pseudorandom Number/Bit Generator (PRNG, PRBG))

An algorithmic technique to create sequences of statistically random
numbers/bits, initialized with a random seed.
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Random Number Generation

Statistical Randomness Tests

NIST FIPS 140-1 is a standard for randomness for PRBGs. It includes
(among others) the following statistical tests, which take as input 20000
PRBG produced bits:

1 Monobit test — the number of ‘1’s should be strictly between 9654
and 10346

2 Poker test — divide the sequence into 5000 non-overlapping blocks
of length 4 and determine whether the frequencies of each length 4
block are as expected

3 Runs test — Bi (number of runs of ‘1’s of length i) and Gi (number
of gaps of length i) must fall into the expected intervals for 1 ≤ i ≤ 6
(runs of length greater than 6 are counted as being length 6)

4 Long run test — no runs of length greater than 34
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Random Number Generation

Cryptographically Secure PRBGs

Simple PRNG example: linear congruential generator

Xn+1 = aXn + c (mod m) .

Advantage: outputs long statistically random sequences

Disadvantage: fails unpredictability — it is too easy to reconstruct
entire sequence given only a few values

Definition 8 (Cryptographically secure PRBG (CSPRBG))

Must pass the next-bit test: there is no polynomial time algorithm that,
on input of the first k bits of an output sequence, can predict the
(k + 1)-st bit with probability significantly greater than 1/2.

For all practical purposes, a CSPRBG is unpredictable.
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Random Number Generation

Examples of CSPRNG

Non-Example: linear congruential PRNG

Simple Examples (idea: output of a strong hash function or block cipher
is statistically random)

Xi = H(Xi−1) where X0 is a random seed (predictable, but good for
distilling random bits from another source).

Xi = EKm(C + 1) where Km is a protected master key and C is a
counter of period N. Seems to be computationally infeasible to
predict next Xi if Km is secret.

More Complicated Examples:

ANSI standard X9.17 — three separate applications of 3DES
(EK1DK2EK1) to generate a 64-bit random number

Blum-Blum-Schub PRBG — satisfies the next-bit test under the
assumption that the QRP is intractable
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Random Number Generation

ANSI X9.17

Inputs:
DTi — 64-bit representation of the current date and time
Vi — 64-bit seed value

Keys: two 56-bit DES keys K1, K2

Outputs:
Ri — 64-bit pseudorandom bit string
Vi+1 — seed value for next iteration

Formulas:

Ri = 3DESK1,K2

(
Vi ⊕ 3DESK1,K2(DTi )

)
Vi+1 = 3DESK1,K2

(
Ri ⊕ 3DESK1,K2(DTi )

)
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Random Number Generation

Diagram of ANSI X9.17
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Random Number Generation

Properties of ANSI X9.17

ANSI X9.17 is one of the strongest PRNGs:

112-bit key

Each round depends on the current date/time DTi and the seed value
Vi which is distinct from the previous pseudorandom number Ri

produced

Even if Ri is compromised, can’t derive Vi+1 without “‘inverting”
3DES

Appears unpredictable in practice (no proof).

Can substitute 3DES with any secure block cipher (eg. AES)
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Random Number Generation

Common Mistakes with PRNGs

The seed must have sufficient entropy to make it unpredictable.

The following are all real life (bad) examples!

1 Generating a random 512-bit prime using a 32-bit seed for the
random number generator. The entropy of the resulting prime is only
32 bits — easy to exhaustively try all possible seeds.

2 Generating a random 512-bit prime by calling a system PRNG that
produces 32-bit random numbers, padding with 0s to 512 bits, and
looking for the smallest prime greater than the number. This
approach also has only 32 bits of entropy.

3 Instead of padding with zeros, call the system PRNG 16 times to
generate 16 32-bit random numbers. This still has only 32 bits of
entropy.
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Fourth Bad Example — Kerberos 4

Kerberos 4 generates DES session keys by using a PRNG, seeded with a
32-bit value, to produce two 32-bit random numbers.

Problem: only 32 bits of entropy (should be 56)

Bigger problem: seed is the XOR of 5 random 32-bit numbers:

time of day in seconds since Jan. 1, 1970

fractional part of the current time in microseconds

process ID of Kerberos server process

cumulative count of session keys produced so far

host id of the machine on which Kerberos is running

Entropy of each of these quantities: between 1 to 20 bits

Thus, Kerberos 4 seed has only 20 bits of entropy — it is easy to test all
220 possible values in seconds! (Better in Kerberos 5.)
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Possible Fix to Kerberos 4

Compute a hash on the concatenation of the 5 values.

Every bit of randomness contributes to every bit of the session key

Successive applications of the hash function will produce further
pseudorandom bits (but with no more total entropy than the seed)

See the Internet Engineering Task Force’s (IETF) Request For Comments
RFC 1750 ”Randomness Recommendations for Security” for more
information about guidelines for deploying random number generators.
Section 6 covers recommendations for software-based strategies for
example.
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Fifth Bad Example — Factoring RSA Moduli

1 Scrounge the internet for lots of RSA public keys with moduli
n1, n2, . . .

2 Compute gcd(ni , nj) for lots of i 6= j

You’d be surprised how many of the moduli you can factor!

Problem: too many people use the same primes, obtained via bad PRNG.
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NIST Recommendations

Moral: The number of bits of entropy must correspond to the overall bit
security of the system.

Example: 1024-bit RSA provides 80 bits of security, so the seed material
for the PRNG must have at least 80 bits of entropy.

NIST’s Recommendations for Security levels:

RSA modulus (in bits) 1024 2048 3072 8192 15360

Hash function size (in bits) 160 224 256 384 512

Security level (in bits) 80 112 128 192 256

Security level: key length for block cipher providing equivalent level of
difficulty to break
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Two Real Life Examples

We will now see two applications that put much of what we’ve learned
together:

PGP
“Pretty Good Privacy” — a secure e-mail system developed by Phil
Zimmerman (www.philzimmermann.com)

SSH
Secure Shell – a PKC based access control system for remote login and
file transfer
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Features of PGP

Website: www.pgp.com

Originally available for free world-wide, since 2010 owned and sold by
Symantec

Runs on most platforms

Uses best available cryptographic primitives

Not developed by government nor standards organization

Compatible with most e-mail programs

Automatically segments large messages (to accommodate message
size limitations)

Users may have multiple public keys, each identified by its 64 low
order bits (key ID, denoted IDK )
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Applications PGP Secure Email

Cryptographic Services Provided by PGP

Authentication, data integrity, non-repudiation, using digital signatures

DSS/SHA-1 (1024 bit keys), RSA/SHA-1 (768 to 3072 bit keys) and
others are supported

Confidentiality, using a variation of CFB encryption (see documentation
for details)

A wide variety of block ciphers including AES are supported

El Gamal and RSA for key transport (hybrid encryption)
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Sending Secure E-Mail Using PGP

A sends an authenticated, encrypted message M to B as follows:

1 Computes the signature S = DA(H(M)) on the SHA-1 hash of M
2 Compresses (S , M) using ZIP
3 Generates a random one time key KOT to be used to encrypt only

this message M
4 Uses KOT to encrypt a time stamp TS , the key ID IDK (EA) of her

public key, the signature S , and the message M:

C = EKOT
(TS , IDK (EA), S , M)

5 Encrypts KOT using B’s public key and sends the corresponding key
ID IDK (EB), encryption of K and C to B:

(IDK (EB), EB(KOT ), C )
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Receiving Secure E-Mail Using PGP

Upon receipt of (IDK (EB), EB(KOT ), C ), B decrypts and verifies:

1 Decrypts the one time key KOT = DB(EB(KOT ))

2 Recovers the signature S and message M by computing
DKOT

(C ) = (TS , IDK (EA), S , M)

3 Checks that the time stamp TS is within an acceptable limit

4 Verifies the authenticity of M by comparing H(M) with EA(S)

Some features:

The key IDs allow A and B to use the correct public keys when they
have multiple public/private key pairs

The use of time stamps prevents replay attacks

No session keys are needed as each symmetric key is used to encrypt
only one message
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Types of Keys in PGP

One-time encryption keys

Generated by PGP via PRNG

Used for encryption of the current message only

Public/private keys

User’s public/private key pairs, other users’ known public keys

Generated by PGP via PRNG

Used for signature generation and verification

Pass phrase

Generated by user

Used for encrypting and storing user’s private keys
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Generation of One Time Keys

Generated pseudorandomly as follows (based on ANSI X9.17):

Compute random 128-bit initial key K0 and random 64-bit IV X0

Compute pseudorandom 64-bit blocks Xi (i = 1, 2, . . . ) as
Xi = EK0(Xi−1)

Use two pseudorandom blocks Xi , Xi+1 as the 128-bit block one time
key KOT

Seed generation:

Generate a 256-byte buffer of true random data by measuring the
latency between key strokes and their content

Pass this data through a hash function for whitening

Same seed generation for generation of public/private key pairs
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Private Key Rings

A user’s public/private key pairs are stored in a private key ring
maintained and stored by the user.

Each entry corresponds to one public/private key pair and contains:

time-stamp (time of key creation)

key ID

public key (generated by PGP)

private key (generated by PGP)

user ID — different ID’s, typically email addresses, may be assigned
to different public/private keys

Stored in encrypted form using a block cipher. Access key is the SHA-1
hash value of a user generated secret pass phrase. To retrieve a private
key, the user gets prompted to enter the pass phrase.
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Public Key Rings

Other users’ public keys known to a user are stored in a public key ring.

Can obtain keys from:

secure public channels, CAs, etc...,

plus from a mutually trusted individual.

Novel aspect of PGP: authenticity of public keys is decentralized

PGP provides a mechanism for quantifying trust.

no central trusted authority!
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Main Problem
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Public Key Ring Entries

Each entry corresponds to one known public key and contains:

user ID (email address), time-stamp, key ID, public key.

owner trust field — is this public key trusted to sign other certificates?
User-assigned — higher value indicates higher degree of trust.

key legitimacy field — higher value indicates higher trust in the
binding of public key to user ID. Computed by PGP as a function of
signature trust fields.

digital signatures — zero or more signatures, each vouching for the
authenticity of the key to ID binding of this public key.

signature trust fields — each indicates the degree of trust in one
signature. Higher value indicates a higher degree of trust in the
signature’s author. The key legitimacy field is a function of the
signature trust fields.
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Obtaining Public Keys, I

A inserts a new public key (certificate with attached signatures) into his
public key ring as follows:

1. The owner trust field is assigned (byte value).

If the public key belongs to A, a value of “ultimate trust” is assigned.

Otherwise, user selects one of “unknown,” “untrusted,” “marginal
trust,” or “complete trust”.

2. Signature trust fields are assigned (byte values). For each attached
signature:

If the signature’s author is unknown, the signature trust field is
assigned “unknown user”.

Otherwise, the signature trust field is assigned the corresponding
owner trust field.
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Obtaining Public Keys, II

3. The key legitimacy field is evaluated based on the signature trust fields:

If at least one signature trust field is “ultimate trust,” the key
legitimacy is assigned “complete”.

Otherwise, key legitimacy is derived from a weighted sum, where
weights are assigned to trust values as follows:

weight of 1/X to “always trusted” signature trust fields,
weight of 1/Y to “usually trusted” signature trust fields,

where X and Y user-configurable parameters.

If total weight is ≥ 1, the key legitimacy is assigned “complete”. So
in the absence of “ultimate trust”, one needs

at least X “always trusted” signatures or
at least Y “usually trusted” signatures or
some suitable combination thereof.

If total weight is < 1, the key legitimacy is assigned “not trusted” or
“marginally trusted”.
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Consistency of Public Key Rings and Key Revocation

This scheme makes it possible to trust the authenticity of a user’s public
key, but not to trust the user to sign other users’ keys.

Key revocation:

PGP occasionally checks public key rings for consistency.

A user can revoke his public keys by issuing a key revocation
certificate — a signed certificate with a revocation flag set — and
sending it to as many users as possible.

The recipients must then update their public key rings accordingly.
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PGP: Usability?

Not in wide-spread use (poor usability).
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SSH (Secure Shell)

Website: www.tectia.com (www.ssh.com redirects to there)

SSH is an access control system consisting of 3 components:
1 SSH Transport Layer Protocol

unilateral authentication (server to client) — client downloads server’s
public key
establishment of shared session key for secure communication

2 SSH User Authentication Protocol
unilateral authentication (client to server) protected by shared session
key

3 SSH Connection Protocol
interactive applications protected by shared session key

Once the secure channel is set up in step 1, the other two are relatively
straightforward.
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SSH TLP — TCP Connection Establishment

1 C → S : VC

2 S → C : VS

3 C → S : IC
4 S → C : IS

Steps 1 & 2: identification

VC , VS : client’s and server’s SSH protocol and software versions

Steps 3 & 4: algorithm negotiation

IC , IS : lists of algorithms supported for key agreement, encryption,
MAC, compression

For each category, the algorithm chosen is the first one listed in IC that is
also listed in IS .
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SSH TLP — Key Agreement

Unilaterally authenticated Diffie-Hellman, server S to client C :

Protocol (all “mod p”s omitted):

1 C → S : g x

2 S → C : KS , g y , sigS

(
H(VC , VS , IC , IS , KS , g x , g y , K )

)
where

KS — server’s public key
K = g xy — session key
VC , VS — SSH protocol & Software versions
IC , IS — algorithm lists

3 C verifies authenticity of KS and validates the server’s signature

Note that KS is not authenticated (beware of man-in-the-middle attacks!)
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Management and Validation of Server’s Public Keys

Two approaches:
1 Use public-key certificates

Problem: PKI not widely deployed

2 Current solution: each client maintains a local database (e.g.
$HOME/.ssh/known hosts) containing associations between servers
and public keys.

Suggested methods to ensure authenticity of stored public keys:

carry authenticated copy on removable storage media (e.g. a USB key
or token)
obtain public key over an insecure channel, verify over phone (read out
hash of obtained public key)

Not perfect, but a huge improvement over rlogin, rsh, rftp,
telnet etc (which have no security!)
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SSH TLP Secure Channel

Once authenticated Diffie-Hellman is completed, server and client have a
shared session key and hence a secure channel.

Services of the secure channel:

Confidentiality

3DES-CBC required
AES128-CBC recommended

Data Integrity

HMAC-SHA1 required
HMAC-SHA1-96 recommended
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SSH User Authentication and Connection Protocols

SSH User Authentication Protocol:

Unilateral authentication (client to server) over the secure channel
established by SSH TLP

Authentication is based on the user proving possession of some
cryptographic credential:

Public key challenge/response required (private key derived from user’s
pass phrase)
Password based authentication should also be supported

SSH Connection Protocol:

standard interactive shell applications over the mutually authenticated
secure channel established by the previous two components
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Words of Wisdom

Cryptography in the Real World is Hard!
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