THE ADVANCED ENCRYPTION STANDARD (AES)

1. Preliminaries

1.1. Operations on Bytes. Consider a byte $b=\left(b_{7}, b_{6}, \ldots, b_{1}, b_{0}\right)$ (an 8 -bit vector) as a polynomial with coefficients in $\{0,1\}$:

$$
b \mapsto b(x)=b_{7} x^{7}+b_{6} x^{6}+\cdots+b_{1} x+b_{0} .
$$

RIJNDAEL makes use of the following operations on bytes, interpreting them as polynomials:
(1) Addition: polynomial addition by taking XOR of coefficients.

$$
\begin{array}{ccccccc}
& b_{7} x^{7} & + & b_{6} x^{6} & +\cdots+ & b_{1} x & + \\
+ & c_{7} x^{7} & + & c_{6} x^{6} & +\cdots+ & c_{1} x & + \\
\hline & \left(b_{7} \oplus c_{7}\right) x^{7} & + & \left(b_{6} \oplus c_{6}\right) x^{6} & +\cdots+ & \left(b_{1} \oplus c_{1}\right) x & + \\
\hline
\end{array}
$$

The sum of two polynomials taken in this manner yields another polynomial of degree 7 . In other words, component-wise XOR of bytes is identified with this addition operation on polynomials.
(2) Multiplication: polynomial multiplication (coefficients are in $\{0,1\}$) modulo $m(x)=x^{8}+x^{4}+x^{3}+$ $x+1$ (remainder when dividing by $m(x)$ - analogous to modulo arithmetic with integers). The remainder when dividing by a degree 8 polynomial will have degree ≤ 7. Thus, the "product" of two bytes is associated with the product of their polynomial equivalents modulo $m(x)$.
(3) Inverse: $b(x)^{-1}$, the inverse of $b(x)=b_{7} x^{7}+b_{6} x^{6}+\cdots+b_{1} x+b_{0}$, is the degree 7 polynomial with coefficients in $\{0,1\}$ such that

$$
b(x) b(x)^{-1} \equiv 1 \quad(\bmod m(x))
$$

Note that this is completely analogous to the case of integer arithmetic modulo n. In this case the "inverse" of the byte $b=\left(b_{7}, b_{6}, \ldots, b_{1}, b_{0}\right)$ is the byte associated with the inverse of $b(x)=$ $b_{7} x^{7}+b_{6} x^{6}+\cdots+b_{1} x+b_{0}$.

By associating bytes with polynomials, we obtain the above three operations on bytes. RIJNDAEL uses inverse as above in the ByteSub operation.
$\mathbb{F}_{2^{8}}$ is the set of 256 bytes viewed as polynomials, together with the operations described above.
1.2. 4-byte Vectors. In the MixColumn operation of RIJNDAEL, 4-byte vectors are considered as degree 3 polynomials with coefficients in $\mathbb{F}_{2^{8}}$. That is, the 4 -byte vector $\left(a_{3}, a_{2}, a_{1}, a_{0}\right)$ is associated with the polynomial

$$
a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}
$$

where each coefficient is a byte viewed as an element of \mathbb{F}_{2} (addition, multiplication, and inversion of the coefficients is performed as described above). We have the following operations on these polynomials:
(1) addition: component-wise "addition" of coefficients (as described above)
(2) multiplication: polynomial multiplication (addition and multiplication of coefficients as described above) modulo $M(x)=x^{4}+1$. Result is a degree 3 polynomial with coefficients in $\mathbb{F}_{2^{8}}$.

In MixColumn, the 4 -byte vector ($a_{3}, a_{2}, a_{1}, a_{0}$) is replaced by the result of multiplying $a(x)=a_{3} x^{3}+a_{2} x^{2}+$ $a_{1} x+a_{0}$ by the fixed polynomial

$$
c(x)=03 x^{3}+01 x^{2}+01 x+02
$$

and reducing modulo $x^{4}+1$. The coefficients of $c(x)$ are given as bytes in hex notation.

2. The Rijndael Algorithm

Rijndael (developed by Daemen and Rijmen):

- designed for block sizes and key lengths to be any multiple of 32 , including those specified in the AES ($n=128, m=128,192,256$)
- iterated cipher: number of rounds, N_{r} depends on the key length. $N_{r}=10$ for $m=128, N_{r}=12$ for $m=192$, and $N_{r}=14$ for $m=256$ (see p. 14 of NIST document).
- $\mathbb{F}_{2^{8}}=\mathbb{F}_{2}[x] /\left(x^{8}+x^{4}+x^{3}+x+1\right)$ used for non-linear byte operations.
- the algorithm operates on a 4×4 array of bytes called the state:

$s_{0,0}$	$s_{0,1}$	$s_{0,2}$	$s_{0,3}$
$s_{1,0}$	$s_{1,1}$	$s_{1,2}$	$s_{1,3}$
$s_{2,0}$	$s_{2,1}$	$s_{2,2}$	$s_{2,3}$
$s_{3,0}$	$s_{3,1}$	$s_{3,2}$	$s_{3,3}$

The dimensions of the state depend on the block size.

- the key is expanded into $N_{r}+1$ round keys, where each round key consists of the same number of bytes as the state.

The Rijndael algorithm (given plaintext M) proceeds as follows (p. 9):
(1) Initialize State with M :

$s_{0,0}$	$s_{0,1}$	$s_{0,2}$	$s_{0,3}$					
$s_{1,0}$	$s_{1,1}$	$s_{1,2}$	$s_{1,3}$					
$s_{2,0}$	$s_{2,1}$	$s_{2,2}$	$s_{2,3}$					
$s_{3,0}$	$s_{3,1}$	$s_{3,2}$	$s_{3,3}$	\leftarrow	m_{0}	m_{4}	m_{8}	m_{12}
:---:	:---:	:---:	:---:					
m_{1}	m_{5}	m_{9}	m_{13}					
m_{2}	m_{6}	m_{10}	m_{14}					
m_{3}	m_{7}	m_{11}	m_{15}					

where M consists of the 16 bytes $m_{0}, m_{1}, \ldots, m_{15}$.
(2) Perform AddRoundKey, which XOR's the first RoundKey with State.
(3) For each of the first $N_{r}-1$ rounds:

- Perform SubBytes on State (using a substitution, or S-box, on each byte of State),
- Perform ShiftRows (a permutation) on State,
- Perform MixColumns (a linear transformation) on State,
- Perform AddRoundKey.
(4) For the last round:
- Perform SubBytes,
- Perform ShiftRows,
- Perform AddRoundKey.
(5) Define the ciphertext C to be State (using the same byte ordering).

Note: Rijndael is a product cipher: each round contains subkey mixing (ADDRoundKEy), substitution (SubBytes), and a permutation (ShiftRows and MixColumns).
2.1. The SubBytes Operation. (p.15) Each byte of State is substituted (independently). Can be implemented via table lookup (memory permitting), but is described algebraically. Let ϕ be the function mapping bytes to elements of $\mathbb{F}_{2^{8}}$ defined by

$$
\phi:\left(a_{7} a_{6} \ldots a_{0}\right) \mapsto \sum_{i=0}^{7} a_{i} x^{i}, a_{i} \in \mathbb{F}_{2}=\{0,1\}
$$

Then:

$$
\operatorname{SubBytes}(a)=\phi^{-1}\left[\left(x^{4}+x^{3}+x^{2}+x+1\right) \phi(a)^{-1}+\left(x^{6}+x^{5}+x+1\right) \bmod \left(x^{8}+1\right)\right] .
$$

This operation can be performed using the following steps:
(1) $z=\phi(a)$ (field representation of the byte a)
(2) $z=z^{-1}$ (take the inverse in $\mathbb{F}_{2^{8}}$)
(3) $b=\phi^{-1}(z)$ (map the field element z to the byte b)
(4) Output the byte b^{\prime} using the following affine transformation:

$$
\left[\begin{array}{l}
b_{0}^{\prime} \\
b_{1}^{\prime} \\
b_{2}^{\prime} \\
b_{3}^{\prime} \\
b_{4}^{\prime} \\
b_{5}^{\prime} \\
b_{6}^{\prime} \\
b_{7}^{\prime}
\end{array}\right]=\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2} \\
b_{3} \\
b_{4} \\
b_{5} \\
b_{6} \\
b_{7}
\end{array}\right] \oplus\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0 \\
1 \\
1 \\
0
\end{array}\right]
$$

Note that $b^{\prime}=\left(b_{7}^{\prime} b_{6}^{\prime} \ldots b_{0}^{\prime}\right)$ where

$$
b_{i}^{\prime}=b_{i} \oplus b_{i+4 \bmod 8} \oplus b_{i+5} \bmod 8 \oplus b_{i+6 \bmod 8} \oplus b_{i+7} \bmod 8 \oplus c_{i}
$$

and $c=(11000110)$.
The inverse of SubBytes (called InvSubBytes, p. 22) is defined by

$$
\operatorname{InvSubBytes}(a)=\phi^{-1}\left[\left(\left(x^{6}+x^{3}+x\right) \phi(a)+\left(x^{2}+1\right) \bmod \left(x^{8}+1\right)\right)^{-1}\right] .
$$

2.2. The ShiftRows Operation. (p. 17) Shifts the rows of State by $0,1,2$, or 3 cells to the left:

$s_{0,0}$	$s_{0,1}$	$s_{0,2}$	$s_{0,3}$					
$s_{1,0}$	$s_{1,1}$	$s_{1,2}$	$s_{1,3}$					
$s_{2,0}$	$s_{2,1}$	$s_{2,2}$	$s_{2,3}$					
$s_{3,0}$	$s_{3,1}$	$s_{3,2}$	$s_{3,3}$	\rightarrow	$s_{0,0}$	$s_{0,1}$	$s_{0,2}$	$s_{0,3}$
:---	:---	:---	:---					
$s_{1,1}$	$s_{1,2}$	$s_{1,3}$	$s_{1,0}$					
$s_{2,2}$	$s_{2,3}$	$s_{2,0}$	$s_{2,1}$					
$s_{3,3}$	$s_{3,0}$	$s_{3,1}$	$s_{3,2}$					

The inverse operation InvShiftRows (p. 21) applies right shifts instead of left shifts.
2.3. The MixColumns Operation. (p. 17) Consider each column of State as a four-term polynomial with coefficients in $\mathbb{F}_{2^{8}}$. For example:

$$
\left(s_{0,0}, s_{1,0}, s_{2,0}, s_{3,0}\right) \mapsto s_{3,0} y^{3}+s_{2,0} y^{2}+s_{1,0} y+s_{0,0}=\operatorname{col}_{0}(y) .
$$

Let $a(y)=(x+1) y^{3}+y^{2}+y+(x)$ be fixed. Then the MixColumns operation replaces each column of State via

$$
\operatorname{col}_{i}(y) \leftarrow a(y) \operatorname{col}_{i}(y) \quad\left(\bmod y^{4}+1\right), \quad i=0,1,2,3 .
$$

Note: MixColumns can also be described as a linear transformation applied to each column of State, i.e., multiplying each 4 -element column vector by a 4×4 matrix with coefficients in $\mathbb{F}_{2^{8}}$.

The inverse (called InvMixColumns, p. 23) is given by

$$
\operatorname{col}_{i}(y) \leftarrow a(y)^{-1} \operatorname{col}_{i}(y) \quad\left(\bmod y^{4}+1\right), \quad i=0,1,2,3
$$

and can also be described as a linear transformation.
2.4. AddRoundKey and the Key Schedule. In AddRoundKey (p. 23), each column of State is XORed with one word of the round key:

$s_{0,0}$	$s_{0,1}$	$s_{0,2}$	$s_{0,3}$					
$s_{1,0}$	$s_{1,1}$	$s_{1,2}$	$s_{1,3}$					
$s_{2,0}$	$s_{2,1}$	$s_{2,2}$	$s_{2,3}$					
$s_{3,0}$	$s_{3,1}$	$s_{3,2}$	$s_{3,3}$	\leftarrow	$s_{0,0}$	$s_{0,1}$	$s_{0,2}$	$s_{0,3}$
:---	:---	:---	:---	:---	:---	:---		
$s_{1,0}$	$s_{1,1}$	$s_{1,2}$	$s_{1,3}$					
$s_{2,0}$	$s_{2,1}$	$s_{2,2}$	$s_{2,3}$					
$s_{3,0}$	$s_{3,1}$	$s_{3,2}$	$s_{3,3}$	\oplus	$w_{0, i+0}$	$w_{0, i+1}$	$w_{0, i+2}$	$w_{0, i+3}$
:---:	:---:	:---:	:---:					
$w_{1, i+0}$	$w_{1, i+1}$	$w_{1, i+2}$	$w_{1, i+3}$					
$w_{2, i+0}$	$w_{2, i+1}$	$w_{2, i+2}$	$w_{2, i+3}$					
$w_{3, i+0}$	$w_{3, i+1}$	$w_{3, i+2}$	$w_{3, i+3}$					

Here $w_{i+0}=\left(w_{0, i+0}, w_{1, i+0}, w_{2, i+0}, w_{3, i+0}\right)$ is the first round key for round i, made up of four bytes.
AddRoundKey is clearly it's own inverse.
Consider 128-bit Rijndael. There are 10 rounds plus one preliminary application of AddRoundKey, so the key schedule must produce 11 round keys, each consisting of four 4 -byte words, from the 128 -bit key (16 bytes). KeyExpansion (p. 19) produces an expanded key consisting of the required 44 words. In the following, the key $K=\left(k_{0}, k_{1}, k_{2}, k_{3}\right)$, where the k_{i} are 4 -byte words, and the expanded key is denoted by the word-vector $\left(w_{0}, w_{1}, w_{2}, \ldots, w_{44}\right)$.
(1) for $i \in\{0,1,2,3\}, w_{i}=k_{i}$
(2) for $i \in\{4, \ldots, 44\}$:

$$
w_{i}=w_{i-4} \oplus \begin{cases}\operatorname{SuBWORD}\left(\operatorname{Rot} \operatorname{Word}\left(w_{i-1}\right)\right) \oplus \operatorname{Rcon}_{i / 4} & \text { if } 4 \mid i \\ w_{i-1} & \text { otherwise }\end{cases}
$$

The components of KeyExpansion are:

- RotWord is a one-byte circular left shift on a word.
- SubWord performs a byte substitution (using the S-box SubBytes on each byte of it's input word).
- Rcon is a table of round constants (Rcon_{j} is used in round j). Each is a word with the three rightmost bytes equal to 0 .

KeyExpansion is similar for 192 and 256-bit keys.
2.5. Decryption. To decrypt, perform cipher in reverse order, using inverses of components and the reverse of the key schedule:
(1) AddRoundKey with round key N_{r}
(2) For rounds $N_{r}-1$ to 1 :

- InvShiftRows
- InvSubBytes
- AddRoundKey
- InvMixColumns
(3) For round 1 :
- InvShiftRows
- InvSubBytes
- AddRoundKey using round key 1

Note: The straightforward inverse cipher has a different sequence of transformations in the rounds. It is possible to reorganize this so that the sequence is the same as that of encryption.

