
THE BLUM-GOLDWASSER PKC

1. Description

E�cient probabilistic technique, semantically secure assuming the intractability of integer factorization.
Smaller message expansion than Goldwasser-Micali | only � blg nc additional bits.

Idea: a pseudorandom bit stream (from the Blum-Blum-Shub pseudorandom number generator) is XORed
with the plaintext. The private key is used to recover the random seed used by the sender to initialize the
PRNG.

Public key: fng; where n = pq for p; q prime p � q � 3 (mod 4): Such an n is said to be a Blum integer .

Private key: fp; q; a; bg; where ap+ bq = 1 with a; b 2 Z:

B encrypts M to send to A as follows:

(1) Let k = blg nc and h = blg kc � 1: Represent M as a string M = (m1m2 : : :mt) of length t where
each mi is a binary string of length h:

(2) Select a seed x0 which is a random quadratic residue modulo n (simply select a random r < n and
put x0 � r2 (mod n)).

(3) For i = 1; : : : ; t :
(a) Compute xi � x2i�1 (mod n):
(b) Let pi be the least h signi�cant bits of xi:
(c) Compute ci = mi� pi:

(4) Compute xt+1 � x2t (mod n):
(5) Send C = (c1c2 : : : ct; xt+1) to A.

Note. Only blg xt+1c � blg nc additional bits transmitted.

A decrypts M from C as follows:
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(2) Compute u � xd1t+1 (mod p) and v � xd2t+1 (mod q): Note that u � x0 (mod p) and v � x0 (mod q);

because p � q � 3 (mod 4) and xi�1 = x
(p+1)=4
i (mod p) for i = 1; : : : ; t+ 1:

(3) Compute x0 � vap+ ubq (mod n) (application of CRT).
(4) For i = 1; : : : ; t :

(a) Compute xi � x2i�1 (mod n):
(b) Let pi be the h least signi�cant bits of xi:
(c) Compute mi = pi� ci:

(5) M = (m1m2 : : :mt):

Proof that decryption is correct. Since xt 2 QRn; we have xt 2 QRp�!x
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t xt � xt (mod p) :

Similarly, x
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t � xt�1 (mod p); and repeating this argument yields

u � xd1t+1 � x0 (mod p); v � xd2t+1 � x0 (mod q) :
1



By the CRT we get
vap+ ubq � x0 (mod n);

and thus A creates the same random seed x0 used by B to encrypt. Hence, A can now decrypt C: �

2. Security

Note that any method that breaks the scheme must reveal the parity bit of the xi (the key).

Theorem 2.1. Let An be an algorithm which given any x 2 QRn returns the parity bit of y where y2 � x
(mod n) and y 2 QRn: Then An can be used to solve the QRP for any [a] 2 Z�n with
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�
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Note. The theorem states that if you have an algorithm An that can predict the previous bit in the key
stream, then this algorithm can be used to solve the QRP.

� it can be shown that previous bit prediction resistance provides the same level of security as next
bit prediction resistance

� hence, breaking BBS is at least as hard as the QRP.

Proof. Suppose we wish to solve the QRP for some [a] 2 Z�n: We �rst determine x � a2 (mod n): We apply
An to x to get b = An(x): Now b is the parity bit of some y where y2 � x (mod n) and y 2 QRn: We know
y2 � a2 (mod n)�!n = pq j (y � a)(y + a): Suppose p j y � a and q j y + a: Then
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and similarly
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and thus
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= �1; which is a contradiction. Hence y � �a (mod n):

� If y � a (mod n); then b is the parity bit of a and a 2 QRn:
� If y � �a (mod n); then y = n� 1 and b is the parity bit of y and is not the parity bit of a (since n
is odd).

Thus, if the parity bit of a equals b; then a 2 QRn and if it does not equal b; then a =2 QRn: �

Disadvantage: scheme is vulnerable to a chosen ciphertext attack. For example, an adversary who wants the
decryption of (C;Xt+1) can mount a chosen ciphertext attack by obtaining the decryption M 0 of (A;Xt+1)
for some random string A of the same length as C: Then K = A�M 0 is the keystream used to produce C;
and M = C �K:
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