THE DIGITAL SIGNATURE ALGORITHM

Invented by NIST (National Institute for Standards and Technology) in 1991 and adapted as a standard (Digital Signature Standard) in Dec. 1994.
Variation of El Gamal signatures - similar security characteristics.
Let H be a cryptographically secure hash function that maps bit strings to \mathbb{Z}_{q} for some integer q. The DSS specifies that SHA-1 be used.
A produces her public and private keys as follows:
(1) Selects a 512 -bit prime p and a 160 -bit prime q such that $q \mid p-1$.
(2) Selects g, a primitive root modulo p
(3) Computes $h \equiv g^{(p-1) / q}(\bmod p), 0<h<p$. Note that $h^{q} \equiv 1(\bmod p)$, and if $a \equiv b(\bmod q)$, then $h^{a} \equiv h^{b}(\bmod p)$.
(4) Randomly selects $x \in \mathbb{Z}$ with $0<x<q$ and computes $y \equiv h^{x}(\bmod p)$

Public key: $\{p, q, h, y\}$
Private key: $\{x\}$
A signs message M as follows:
(1) A selects a random integer k with $0<k<q$.
(2) A computes $r \equiv\left(h^{k} \bmod p\right)(\bmod q), 0<r<q$.
(3) A computes $s \equiv k^{-1}(H(M)+x r)(\bmod q)$.
(4) A's signature is the pair $\{r, s\}$ (320 bits)
B verifies A's signature as follows:
(1) B obtains A's authentic public key $\{p, q, h, y\}$.
(2) B computes $u_{1} \equiv H(M) s^{-1}(\bmod q), u_{2} \equiv r s^{-1}(\bmod q)$, and $v \equiv\left(h^{u_{1}} y^{u_{2}} \bmod p\right)(\bmod q), 0<$ $v<q$.
(3) B accepts if and only if $v=r$.

Proof of Correctness. We note that $k \equiv s^{-1}(H(M)+x r)(\bmod q)$ and

$$
\begin{aligned}
h^{u_{1}} y^{u_{2}} & \equiv h^{H(M) s^{-1}} y^{r s^{-1}} \quad(\bmod p) \\
& \equiv h^{H(M) s^{-1}} h^{x r s^{-1}} \quad(\bmod p) \\
& \equiv h^{s^{-1}(H(M)+x r)} \quad(\bmod p) \\
& \equiv h^{k} \quad(\bmod p)
\end{aligned}
$$

Hence $\left(h^{u_{1}} h^{u_{2}} \bmod p\right) \equiv r(\bmod q)$ and $v=r$.
Note. We have a small signature (320 bits) but computations are done modulo a 512 -bit prime. Security is based on the belief that solving the DLP in $\langle[h]\rangle \subset \mathbb{F}_{p}^{*}$ is hard.

Security:

- based on the belief that solving the DLP in $\langle[h]\rangle \subset \mathbb{F}_{p}^{*}$ is hard (seems reasonable)
- proof of GMR-security does not hold, because $H(M)$ is signed as opposed to $H(M, r)$ (reduction requires that the forger be forced to use the same r for two signatures)
More information: "Another look at provable security" (Koblitz and Menezes, J. Cryptology 2007)

