
BRIEF REVIEW OF MODULAR ARITHMETIC, GROUPS, AND FIELDS

1. Modular Arithmetic

De�nition 1.1. Given an integer m called the modulus, we say for a; b 2 Z that a � b (mod m) (a is
congruent to b modulo m) if m j a� b:

Example 1.1. 5 � 2 (mod 3); 29 � 5 (mod 8); �3 � �7 (mod 4)

Consider a = mq+ r; where r is the remainder when dividing a by m: Then a � r (mod m); i.e., computing
modulo m means taking the remainder when dividing by m:

The following three statements are equivalent:

(1) a � b (mod m);
(2) there exists k 2 Z with a = b+ km;
(3) when divided by m; both a and b leave the same remainder.

Note. a � 0 (mod m) means that m j a:

Note. When performing modular arithmetic on a computer, it is usually convienient to work with least
positive remainders. In other words, represent a mod m by the unique integer r 2 f0; 1; : : : ;m � 1g such
that a � r (mod m): In most programming languages, the % operator returns a negative remainder if one
of the operands is negative; you need to make it positive yourself.

a = -5 % 3 // a = -2

if (a < 0)

a += 3 // a = 1

Congruence modulo m satis�es the following properties:

(1) a � a (mod m) (reexive)
(2) a � b (mod m)�! b � a (mod m) (symmetric)
(3) If a � b (mod m) and b � c (mod m); then a � c (mod m) (transitive property)
(4) If a � b (mod m) and c � d (mod m) then a+ c � b+ d (mod m) and ac � bd (mod m):

Rules for performing arithmetic modulo m :

(1) Constants can be reduced modulo m (use least positive remainders).
(2) You can add or subtract anything from both sides of an equation.
(3) You can multiply anything to both sides of an equation.
(4) You can divide both sides by r if gcd(r;m) = 1: If d = gcd(r;m) 6= 1; you can do the same but the

result is correct modular m=d:
(5) To change �k (mod m) to its positive equivalent, add enough m's to �k until it is positive.
(6) (Cancellation laws) If a+ k � b+ k (mod m); then a � b (mod m): If ak � bk (mod m); then a � b

(mod m= gcd(m; k)):

Example 1.2. Solve 6x+ 5 � �7 (mod 4):

We have

6x+ 5 � �7 (mod 4)

2x+ 1 � 1 (mod 4) (reduce constants modulo 4)

2x � 0 (mod 4) (subtract 1 from both sides)

x � 0 (mod 2) (divide both sides by 2 | note soln is mod2) :
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1.1. Inversion. Division (except for the cancellation law) in not de�ned for modular arithmetic per se.
However, the essence of division is captured by the notion of multiplicative inverses. For example, in
the real numbers R; the multiplicative inverse of x 2 R is de�ned to be the real number x�1 such that
xx�1 = x�1x = 1: Division in R can be viewed as multiplication by inverses, for example, x=y is the same
as xy�1:

Multiplicative inverses modulo m are de�ned analogously.

De�nition 1.2. A multiplicative inverse of a modulo m is any integer a�1 such that aa�1 � a�1a � 1
(mod m):

Any integer x which satis�es the linear congruence

ax � 1 (mod m)

is an inverse of a modulo m: Note that this linear congruence is soluble if and only if gcd(a;m) = 1; i.e.,
a has a multiplicative inverse modulo m if and only if gcd(a;m) = 1: Also, if it is soluble, then there are
in�nitely many solutions; if a�1 is an inverse of a; then a�1 + km is also an inverse for any k 2 Z:

Example 1.3. 7�1 � 15 (mod 26); since

7 � 15 � 15 � 7 � 105 � 1 (mod 26) :

7�1 (mod 26) exists because gcd(7; 26) = 1: 41 = 15 + 26; 67 = 15 + 2 � 26; and �63 = 15 � 3 � 26 are also
inverses. Indeed, 15 + 26k; k 2 Z; are all inverses of 7; since

7(15 + 26k) � (15 + 26k)7 � 105 + 26(7k) � 1 (mod 26) :

Example 1.4. Compute D = ( 7 9
3 12 )

�1
(mod 26):

We will use the fact that if A =
�
a b
c d

�
2 R2�2; then

A�1 =
1

jAj

�
d �b
�c a

�
:

In our case, A = ( 7 9
3 12 ) ; jAj = 57; and

A�1 =
1

57

�
12 �9
�3 7

�
:

To verify that this is indeed an inverse (over R2�2) we compute

A�1A =
1

57

�
12 �9
�3 7

��
7 9
3 12

�
=

1

57

�
57 0
0 57

�
=

�
1 0
0 1

�
:

To compute A�1 (mod 26); we �rst need to compute 57�1 (mod 26): Since gcd(57; 26) = 1; we know it
exists, i.e., the linear congruence

(1) 57x � 5x � 1 (mod 26)

has a solution. To compute 57�1; we can either solve (1) using the extended Euclidean algorithm (which
we'll cover later), or, since the modulus 26 is so small, simply �nd it by trial and error. We compute
57�1 � 5�1 � 21 (mod 26):

Once we have 57�1 (mod 26); the rest of the computation proceeds as follows:

A�1 � 57�1
�
12 �9
�3 7

�
(mod 26)

� 21

�
12 17
23 7

�
(mod 26)

�

�
252 357
483 147

�
(mod 26)

�

�
18 19
15 17

�
(mod 26) :
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Verify:

A�1A =

�
261 286
234 261

�
�

�
1 0
0 1

�
(mod 26) :

1.2. Congruence Classes. Let m > 0 be a modulus. Congruence modulo m is an equivalence relation,
partitioning the integers into m distint equivalence classes. De�ne [r] to be the set of all a 2 Z such that
a � r (mod m): We call [r] a residue (or equivalence) class modulo m; and we put Zm to be the set of all
residue classes modulo m: Then jZmj = m and

Zm = f[0]; [1]; : : : ; [m� 1]g

i.e., [0] = [m] = [2m] = : : :

Suppose a = qm + r and gcd(r;m) = 1: Then gcd(a;m) = 1; and we see that if a 2 [r] and gcd(r;m) = 1;
then gcd(a;m) = 1: De�ne

Z�m = f[r] 2 Zm j gcd(r;m) = 1g :

We call Z�m a reduced set of residues modulo m:

De�ne the operation � on Z�m as

[r] � [s] = [rs]; [r]; [s] 2 Z�m :

Given [r] 2 Z�m; there exists [s] 2 Z
�

m such that [r] � [s] = [1]; i.e., [s] is an inverse of [r] in Z�m: To �nd s;
solve rs � 1 (mod m):

2. Group Theory

De�nition 2.1. Let G be any set with an operation � de�ned on G with the following properties:

(1) if a; b 2 G; then a � b 2 G (closure),
(2) if a; b; c 2 G; then (a � b) � c = a � (b � c) = a � b � c (associativity),
(3) there exists e 2 G such that 8a 2 G we have e � a = a � e = a (e is called an identity element),
(4) 8a 2 G; there exists an element a�1 such that a�1 � a = a � a�1 = e (existence of inverses)

G is said to form a group under the operation �:

If 8a; b 2 G a � b = b � a; then G is said to be a commutative or abelian group.

If G is a group and jGj is in�nite, we say that G is an in�nite group. For example:

� Z under +
� Q under �
� Rn�n under matrix multiplication (not abelian)
� set of points on y2 = x3 + ax+ b over Q

If jGj is �nite and jGj = k; we say that G is a group of order k: For example:

� Zm under +
� Z�m under �
� set of points on y2 = x3 + ax+ b modulo p prime

We now write ab for a � b: Let a 2 G (a group). De�ne an = aaa : : : a (n a's) for n 2 Z+ and a0 = e:

Theorem 2.1. (an)�1 = (a�1)n:

De�ne a�n = (a�1)n; n 2 Z+: We have anam = an+m; n;m 2 Z:

De�nition 2.2. If a 2 G and k is the least positive integer such that ak = e; then k is the order of a in G:

Theorem 2.2. For any �nite group, there always exists a �nite order for each a 2 G:
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Proof. Let G be a �nite group and let a 2 G: Consider the sequence

fa; a2; a3; : : : ; am; : : : ; an; : : : ; a1g :

Since we can put n > jGj; we must have two elements in the sequence being the same, i.e., am = an for some
n;m with n > m and

e = am(am)�1 = an(am)�1 = ana�m = an�m :

�

De�nition 2.3. If G is a group and H � G; then H is called a subgroup of G if H is also a group under the
same operation of G:

Theorem 2.3 (Lagrange). If G is a �nite group and H is a subgroup of G; then jHj j jGj:

Let G be a �nite group and let a 2 G: Consider H = fe; a; a2; : : : ; ak�1g; where k is the order of a: H is a
subgroup of G�! k j jGj:

The trivial subgroups of a group G are G and feg:

De�nition 2.4. A group like H = fe; a; a2; : : : ; ak�1g is called a cyclic group if there exists some g 2 H
such that for every a 2 H; a = gi (i 2 Z). We denote this group by < g > :

3. Field Theory

De�nition 3.1. Let F be any set with operations + and � de�ned on F satisfying the following properties:

(1) F is an abelian group with respect to +
(2) F � f0g (0 is the additive identity) is an abelian group with respect to �
(3) + and � are distributive in R; i.e.,

a(b+ c) = ab+ ac and (a+ b)c = ac+ bc 8a; b; c 2 R :

F is said to form a �eld under + and �:

Example 3.1. Q; R; and C are �elds | Z is not a �eld.

Zp is a �eld under (modular) addition and multiplication if p is prime. This �eld is denoted by Fp or GF (p)
(Galois �eld).

Let F be any �eld. Then f0; 1g � F where 0 denotes the additive identity element and 1 denotes the
multiplicative identity. Denote for a 2 Z+ :

_a =
aX

i=1

1 2 F :

There are two possible cases:

(1) _a 6= 0 for any a 2 Z+;
(2) there exists a minimal m 2 Z+ such that _m = 0:

De�nition 3.2. A �eld having Property 1 is said to be a �eld of characteristic 0. A �eld having Property 2
is said to be a �eld of characteristic m:

Example 3.2. Q;R;C are �elds of characteristic 0 and Fp is a �eld of characteristic p:

De�nition 3.3. Let F1 and F2 be �elds and suppose we have a mapping � : F1 7! F2 such that:

(1) � is onto,
(2) � is one-to-one,
(3) �(x+ y) = �(x) + �(y);
(4) �(xy) = �(x)�(y)

We say that F1 and F2 are isomorphic.
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Theorem 3.1. Any �eld of characteristic 0 has a sub�eld isomorphic to Q:

Corollary 3.2. If F is a �eld of characteristic 0; then F is an in�nite �eld.

Notice that any �nite �eld must have non-zero characteristic.

Theorem 3.3. Let F be any �eld of characteristic m: Then m must be prime.

Theorem 3.4. Any �eld of characteristic p contains a sub�eld isomorphic to Fp:

Theorem 3.5. If F is a �nite �eld of characteristic p; then jF j = pn for some n 2 Z+:

Theorem 3.6. If F1 and F2 are �nite �elds and jF1j = jF2j; then F1 �= F2:

The �nite �eld with pn elements is denoted by Fpn or Fq; where q = pn: Although all �nite �elds of the same
order are isomorphic, there may be several di�erent representations, some of which may be more attractive
computationally than others.

3.1. Finite Fields. Finite �elds of order p and 2n are important in cryptography. For example:

� a number of public-key systems are set in the multiplicative group of Fp (denoted by F�p),
� elliptic curves in cryptography are typically de�ned over Fp or F2n ;
� Rijndael uses arithmetic in F28 for its non-linear substitutions.

Arithmetic in Fp is simply integer arithmetic modulo p: Unfortunately, performing integer arithmetic modulo
pn does not yield a �eld (why?). In general, to construct a �nite �eld of order pn :

� Find a polynomial m(x) over Fp which is irreducible and of degree n:
� The residue classes of polynomials in Fp[x] (polynomials with coe�cients in Fp) modulo m(x) form
a �nite �eld under polynomial addition and polynomial multiplication.

Thus:

� The elements of Fpn can be represented by polynomials with coe�cients in Fp of degree < n:
� Addition is addition of polynomials (coe�cient arithmetic modulo p).
� Multiplication is multiplication of polynomials modulo m(x) (coe�cient arithmetic modulo p).

Example 3.3. Rijndael uses arithmetic in F28 with m(x) = x8 + x4 + x3 + x + 1: Notice that an element
f 2 F28 has the form

f = a7x
7 + a6x

6 + � � �+ a1x+ a0; ai 2 F2

and thus every 8-bit byte can be identi�ed with a unique �eld element.

Let f = x6 + x4 + x2 + x+ 1 and g = x7 + x+ 1: Then

f + g = (x6 + x4 + x2 + x+ 1) + (x7 + x+ 1)

= x7 + x6 + x4 + x2

fg = (x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1) mod m(x)

= x7 + x6 + 1

Notice that addition in F2n is simply bitwise XOR. To compute the multiplicative inverse of f(x) 2 F2n ;
compute g(x) such that f(x)g(x) � 1 (mod m(x)); using the Extended Euclidean Algorithm for polynomials.
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