BRIEF REVIEW OF MODULAR ARITHMETIC, GROUPS, AND FIELDS

1. MODULAR ARITHMETIC

Definition 1.1. Given an integer *m* called the *modulus*, we say for $a, b \in \mathbb{Z}$ that $a \equiv b \pmod{m}$ (*a* is *congruent* to *b* modulo *m*) if $m \mid a - b$.

Example 1.1. $5 \equiv 2 \pmod{3}$, $29 \equiv 5 \pmod{8}$, $-3 \equiv -7 \pmod{4}$

Consider a = mq + r, where r is the remainder when dividing a by m. Then $a \equiv r \pmod{m}$, i.e., computing modulo m means taking the remainder when dividing by m.

The following three statements are equivalent:

- (1) $a \equiv b \pmod{m}$,
- (2) there exists $k \in \mathbb{Z}$ with a = b + km,
- (3) when divided by m, both a and b leave the same remainder.

Note. $a \equiv 0 \pmod{m}$ means that $m \mid a$.

Note. When performing modular arithmetic on a computer, it is usually convienient to work with least positive remainders. In other words, represent $a \mod m$ by the unique integer $r \in \{0, 1, \ldots, m-1\}$ such that $a \equiv r \pmod{m}$. In most programming languages, the % operator returns a negative remainder if one of the operands is negative; you need to make it positive yourself.

a = -5 % 3 // a = -2 if (a < 0) a += 3 // a = 1

Congruence modulo m satisfies the following properties:

- (1) $a \equiv a \pmod{m}$ (reflexive)
- (2) $a \equiv b \pmod{m} \longrightarrow b \equiv a \pmod{m}$ (symmetric)
- (3) If $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, then $a \equiv c \pmod{m}$ (transitive property)
- (4) If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ then $a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$.

Rules for performing arithmetic modulo m:

- (1) Constants can be reduced modulo m (use least positive remainders).
- (2) You can add or subtract anything from both sides of an equation.
- (3) You can multiply anything to both sides of an equation.
- (4) You can divide both sides by r if gcd(r, m) = 1. If $d = gcd(r, m) \neq 1$, you can do the same but the result is correct modular m/d.
- (5) To change $-k \pmod{m}$ to its positive equivalent, add enough m's to -k until it is positive.
- (6) (Cancellation laws) If $a + k \equiv b + k \pmod{m}$, then $a \equiv b \pmod{m}$. If $ak \equiv bk \pmod{m}$, then $a \equiv b \pmod{m}$, $dm = b \pmod{m}$.

Example 1.2. Solve $6x + 5 \equiv -7 \pmod{4}$.

We have

 $\begin{array}{ll} 6x+5\equiv-7\pmod{4}\\ 2x+1\equiv 1\pmod{4}\\ 2x\equiv 0\pmod{4}\\ x\equiv 0\pmod{2}\end{array} \qquad (\mbox{reduce constants modulo 4})\\ (\mbox{subtract 1 from both sides})\\ (\mbox{divide both sides by 2}-\mbox{note soln is mod2}) \ . \end{array}$

1.1. **Inversion.** Division (except for the cancellation law) in not defined for modular arithmetic per se. However, the essence of division is captured by the notion of *multiplicative inverses*. For example, in the real numbers \mathbb{R} , the multiplicative inverse of $x \in \mathbb{R}$ is defined to be the real number x^{-1} such that $xx^{-1} = x^{-1}x = 1$. Division in \mathbb{R} can be viewed as multiplication by inverses, for example, x/y is the same as xy^{-1} .

Multiplicative inverses modulo m are defined analogously.

Definition 1.2. A multiplicative inverse of a modulo m is any integer a^{-1} such that $aa^{-1} \equiv a^{-1}a \equiv 1 \pmod{m}$.

Any integer x which satisfies the linear congruence

 $ax \equiv 1 \pmod{m}$

is an inverse of a modulo m. Note that this linear congruence is soluble if and only if gcd(a, m) = 1, i.e., a has a multiplicative inverse modulo m if and only if gcd(a, m) = 1. Also, if it is soluble, then there are infinitely many solutions; if a^{-1} is an inverse of a, then $a^{-1} + km$ is also an inverse for any $k \in \mathbb{Z}$.

Example 1.3. $7^{-1} \equiv 15 \pmod{26}$, since

$$7 \cdot 15 \equiv 15 \cdot 7 \equiv 105 \equiv 1 \pmod{26}$$

 $7^{-1} \pmod{26}$ exists because gcd(7, 26) = 1. 41 = 15 + 26, $67 = 15 + 2 \cdot 26$, and $-63 = 15 - 3 \cdot 26$ are also inverses. Indeed, 15 + 26k, $k \in \mathbb{Z}$, are all inverses of 7, since

$$(15+26k) \equiv (15+26k)7 \equiv 105+26(7k) \equiv 1 \pmod{26}$$

Example 1.4. Compute $D = \begin{pmatrix} 7 & 9 \\ 3 & 12 \end{pmatrix}^{-1} \pmod{26}$. We will use the fact that if $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{R}^{2 \times 2}$, then

 $\overline{7}$

$$A^{-1} = \frac{1}{|A|} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

In our case, $A = \begin{pmatrix} 7 & 9 \\ 3 & 12 \end{pmatrix}$, |A| = 57, and

$$4^{-1} = \frac{1}{57} \begin{pmatrix} 12 & -9 \\ -3 & 7 \end{pmatrix}$$

To verify that this is indeed an inverse (over $\mathbb{R}^{2\times 2}$) we compute

$$A^{-1}A = \frac{1}{57} \begin{pmatrix} 12 & -9 \\ -3 & 7 \end{pmatrix} \begin{pmatrix} 7 & 9 \\ 3 & 12 \end{pmatrix} = \frac{1}{57} \begin{pmatrix} 57 & 0 \\ 0 & 57 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

To compute $A^{-1} \pmod{26}$, we first need to compute $57^{-1} \pmod{26}$. Since gcd(57, 26) = 1, we know it exists, i.e., the linear congruence

(1)
$$57x \equiv 5x \equiv 1 \pmod{26}$$

has a solution. To compute 57^{-1} , we can either solve (1) using the extended Euclidean algorithm (which we'll cover later), or, since the modulus 26 is so small, simply find it by trial and error. We compute $57^{-1} \equiv 5^{-1} \equiv 21 \pmod{26}$.

Once we have $57^{-1} \pmod{26}$, the rest of the computation proceeds as follows:

$$A^{-1} \equiv 57^{-1} \begin{pmatrix} 12 & -9 \\ -3 & 7 \end{pmatrix} \pmod{26}$$
$$\equiv 21 \begin{pmatrix} 12 & 17 \\ 23 & 7 \end{pmatrix} \pmod{26}$$
$$\equiv \begin{pmatrix} 252 & 357 \\ 483 & 147 \end{pmatrix} \pmod{26}$$
$$\equiv \begin{pmatrix} 18 & 19 \\ 15 & 17 \end{pmatrix} \pmod{26} .$$

Verify:

$$A^{-1}A = \begin{pmatrix} 261 & 286\\ 234 & 261 \end{pmatrix} \equiv \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} \pmod{26}$$

1.2. Congruence Classes. Let m > 0 be a modulus. Congruence modulo m is an equivalence relation, partitioning the integers into m distint equivalence classes. Define [r] to be the set of all $a \in \mathbb{Z}$ such that $a \equiv r \pmod{m}$. We call [r] a residue (or equivalence) class modulo m, and we put \mathbb{Z}_m to be the set of all residue classes modulo m. Then $|\mathbb{Z}_m| = m$ and

$$\mathbb{Z}_m = \{ [0], [1], \dots, [m-1] \}$$

i.e., $[0] = [m] = [2m] = \dots$

Suppose a = qm + r and gcd(r, m) = 1. Then gcd(a, m) = 1, and we see that if $a \in [r]$ and gcd(r, m) = 1, then gcd(a, m) = 1. Define

$$\mathbb{Z}_m^* = \{ [r] \in \mathbb{Z}_m \mid \gcd(r, m) = 1 \} .$$

We call \mathbb{Z}_m^* a reduced set of residues modulo m.

Define the operation * on \mathbb{Z}_m^* as

$$[r] * [s] = [rs], \quad [r], [s] \in \mathbb{Z}_m^*$$

Given $[r] \in \mathbb{Z}_m^*$, there exists $[s] \in \mathbb{Z}_m^*$ such that [r] * [s] = [1], i.e., [s] is an inverse of [r] in \mathbb{Z}_m^* . To find s, solve $rs \equiv 1 \pmod{m}$.

2. GROUP THEORY

Definition 2.1. Let G be any set with an operation * defined on G with the following properties:

- (1) if $a, b \in G$, then $a * b \in G$ (closure),
- (2) if $a, b, c \in G$, then (a * b) * c = a * (b * c) = a * b * c (associativity),
- (3) there exists $e \in G$ such that $\forall a \in G$ we have e * a = a * e = a (e is called an identity element),
- (4) $\forall a \in G$, there exists an element a^{-1} such that $a^{-1} * a = a * a^{-1} = e$ (existence of inverses)

G is said to form a group under the operation *.

If $\forall a, b \in G \ a * b = b * a$, then G is said to be a *commutative* or *abelian* group.

If G is a group and |G| is infinite, we say that G is an infinite group. For example:

- \mathbb{Z} under +
- \mathbb{Q} under \times
- $\mathbb{R}^{n \times n}$ under matrix multiplication (not abelian)
- set of points on $y^2 = x^3 + ax + b$ over \mathbb{Q}

If |G| is finite and |G| = k, we say that G is a group of order k. For example:

- \mathbb{Z}_m under +
- \mathbb{Z}_m^* under \times
- set of points on $y^2 = x^3 + ax + b$ modulo p prime

We now write ab for a * b. Let $a \in G$ (a group). Define $a^n = aaa \dots a$ (n a's) for $n \in \mathbb{Z}^+$ and $a^0 = e$.

Theorem 2.1. $(a^n)^{-1} = (a^{-1})^n$.

Define $a^{-n} = (a^{-1})^n$, $n \in \mathbb{Z}^+$. We have $a^n a^m = a^{n+m}$, $n, m \in \mathbb{Z}$.

Definition 2.2. If $a \in G$ and k is the least positive integer such that $a^k = e$, then k is the order of a in G.

Theorem 2.2. For any finite group, there always exists a finite order for each $a \in G$.

Proof. Let G be a finite group and let $a \in G$. Consider the sequence

$$\{a, a^2, a^3, \ldots, a^m, \ldots, a^n, \ldots, a^\infty\}$$
 .

Since we can put n > |G|, we must have two elements in the sequence being the same, i.e., $a^m = a^n$ for some n, m with n > m and

$$e = a^m (a^m)^{-1} = a^n (a^m)^{-1} = a^n a^{-m} = a^{n-m}$$
.

Definition 2.3. If G is a group and $H \subseteq G$, then H is called a *subgroup* of G if H is also a group under the same operation of G.

Theorem 2.3 (Lagrange). If G is a finite group and H is a subgroup of G, then |H| |G|.

Let G be a finite group and let $a \in G$. Consider $H = \{e, a, a^2, \ldots, a^{k-1}\}$, where k is the order of a. H is a subgroup of $G \longrightarrow k ||G|$.

The trivial subgroups of a group G are G and $\{e\}$.

Definition 2.4. A group like $H = \{e, a, a^2, ..., a^{k-1}\}$ is called a *cyclic group* if there exists some $g \in H$ such that for every $a \in H$, $a = g^i$ $(i \in \mathbb{Z})$. We denote this group by $\langle g \rangle$.

3. FIELD THEORY

Definition 3.1. Let F be any set with operations + and \times defined on F satisfying the following properties:

- (1) F is an abelian group with respect to +
- (2) $F \{0\}$ (0 is the additive identity) is an abelian group with respect to \times
- (3) + and \times are distributive in R, i.e.,

a(b+c) = ab + ac and $(a+b)c = ac + bc \quad \forall a, b, c \in R$.

F is said to form a *field* under + and \times .

Example 3.1. \mathbb{Q} , \mathbb{R} , and \mathbb{C} are fields — \mathbb{Z} is not a field.

 \mathbb{Z}_p is a field under (modular) addition and multiplication if p is prime. This field is denoted by \mathbb{F}_p or GF(p) (Galois field).

Let \mathbb{F} be any field. Then $\{0,1\} \subseteq \mathbb{F}$ where 0 denotes the additive identity element and 1 denotes the multiplicative identity. Denote for $a \in \mathbb{Z}^+$:

$$\dot{a} = \sum_{i=1}^{a} 1 \in \mathbb{F} .$$

There are two possible cases:

- (1) $\dot{a} \neq 0$ for any $a \in \mathbb{Z}^+$,
- (2) there exists a minimal $m \in \mathbb{Z}^+$ such that $\dot{m} = 0$.

Definition 3.2. A field having Property 1 is said to be a field of characteristic 0. A field having Property 2 is said to be a field of characteristic m.

Example 3.2. $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ are fields of characteristic 0 and \mathbb{F}_p is a field of characteristic p.

Definition 3.3. Let \mathbb{F}_1 and \mathbb{F}_2 be fields and suppose we have a mapping $\Theta : \mathbb{F}_1 \to \mathbb{F}_2$ such that:

- (1) Θ is onto,
- (2) Θ is one-to-one,
- (3) $\Theta(x+y) = \Theta(x) + \Theta(y),$
- (4) $\Theta(xy) = \Theta(x)\Theta(y)$

We say that \mathbb{F}_1 and \mathbb{F}_2 are *isomorphic*.

Theorem 3.1. Any field of characteristic 0 has a subfield isomorphic to \mathbb{Q} .

Corollary 3.2. If \mathbb{F} is a field of characteristic 0, then \mathbb{F} is an infinite field.

Notice that any finite field must have non-zero characteristic.

Theorem 3.3. Let \mathbb{F} be any field of characteristic m. Then m must be prime.

Theorem 3.4. Any field of characteristic p contains a subfield isomorphic to \mathbb{F}_p .

Theorem 3.5. If \mathbb{F} is a finite field of characteristic p, then $|F| = p^n$ for some $n \in \mathbb{Z}^+$.

Theorem 3.6. If \mathbb{F}_1 and \mathbb{F}_2 are finite fields and $|\mathbb{F}_1| = |\mathbb{F}_2|$, then $\mathbb{F}_1 \cong \mathbb{F}_2$.

The finite field with p^n elements is denoted by \mathbb{F}_{p^n} or \mathbb{F}_q , where $q = p^n$. Although all finite fields of the same order are isomorphic, there may be several different *representations*, some of which may be more attractive computationally than others.

3.1. Finite Fields. Finite fields of order p and 2^n are important in cryptography. For example:

- a number of public-key systems are set in the multiplicative group of \mathbb{F}_p (denoted by \mathbb{F}_p^*),
- elliptic curves in cryptography are typically defined over \mathbb{F}_p or \mathbb{F}_{2^n} ,
- Rijndael uses arithmetic in \mathbb{F}_{2^8} for its non-linear substitutions.

Arithmetic in \mathbb{F}_p is simply integer arithmetic modulo p. Unfortunately, performing integer arithmetic modulo p^n does not yield a field (why?). In general, to construct a finite field of order p^n :

- Find a polynomial m(x) over \mathbb{F}_p which is irreducible and of degree n.
- The residue classes of polynomials in $\mathbb{F}_p[x]$ (polynomials with coefficients in \mathbb{F}_p) modulo m(x) form a finite field under polynomial addition and polynomial multiplication.

Thus:

- The elements of \mathbb{F}_{p^n} can be represented by polynomials with coefficients in \mathbb{F}_p of degree < n.
- Addition is addition of polynomials (coefficient arithmetic modulo *p*).
- Multiplication is multiplication of polynomials modulo m(x) (coefficient arithmetic modulo p).

Example 3.3. Rijndael uses arithmetic in \mathbb{F}_{2^8} with $m(x) = x^8 + x^4 + x^3 + x + 1$. Notice that an element $f \in \mathbb{F}_{2^8}$ has the form

$$f = a_7 x^7 + a_6 x^6 + \dots + a_1 x + a_0, \quad a_i \in \mathbb{F}_2$$

and thus every 8-bit byte can be identified with a unique field element.

Let $f = x^6 + x^4 + x^2 + x + 1$ and $g = x^7 + x + 1$. Then

$$f + g = (x^{6} + x^{4} + x^{2} + x + 1) + (x^{7} + x + 1)$$

= $x^{7} + x^{6} + x^{4} + x^{2}$
 $fg = (x^{13} + x^{11} + x^{9} + x^{8} + x^{6} + x^{5} + x^{4} + x^{3} + 1) \mod m(x)$
= $x^{7} + x^{6} + 1$

Notice that addition in \mathbb{F}_{2^n} is simply bitwise XOR. To compute the multiplicative inverse of $f(x) \in \mathbb{F}_{2^n}$, compute g(x) such that $f(x)g(x) \equiv 1 \pmod{m(x)}$, using the Extended Euclidean Algorithm for polynomials.