THE RABIN-WILLIAMS PKC

1. Description of Rabin-Williams

Public-key encryption scheme provably equivalent to integer factorization (Rabin, Williams 1980). Modification of Rabin's scheme (similar to RSA using e = 2) with unique decryption.

Lemma 1.1. Let n = pq with $p \equiv q \equiv -1 \pmod{4}$. If $\binom{M}{n} = 1$, then $M^{\phi(n)/4} \equiv \pm 1 \pmod{n}$

Proof. $\left(\frac{M}{pq}\right) = 1 \longrightarrow \left(\frac{M}{p}\right) = \left(\frac{M}{q}\right)$. If $\left(\frac{M}{p}\right) = 1$, then $M^{\frac{p-1}{2}} \equiv 1 \pmod{p}$

$$M^{\frac{p-1}{2}\frac{q-1}{2}} \equiv 1 \pmod{p} \ .$$

Similarly,

$$M^{\frac{q-1}{2}\frac{p-1}{2}} \equiv 1 \pmod{q}$$

and by the CRT we have $M^{\phi(n)/4} \equiv 1 \pmod{n}$.

If $\left(\frac{M}{p}\right) = -1$, then we use the fact that $(-1)^{(p-1)/2} \equiv -1 \pmod{p}$ when $p \equiv -1 \pmod{4}$ to argue that $M^{\phi(n)/4} \equiv -1 \pmod{n}$.

1.1. Key Generation. Select large primes p, q with $p \equiv 3 \pmod{8}, q \equiv 7 \pmod{8}$, and put n = pq. Select at random e such that 1 < e < n and $gcd(e, \phi(n)) = 1$. Solve $ed \equiv m \pmod{\phi(n)}$ where $m = (\phi(n)/4 + 1)/2$.

Public key: $\{n, e\}$ Private key: $\{d\}$

1.2. Encryption and Decryption. Define $\mathcal{M} = \{M \mid (2(2M+1) < n \text{ and } (\frac{2M+1}{n}) = -1) \text{ or } (4(2M+1) < n \text{ and } (\frac{2M+1}{n}) = 1)\}.$

Theorem 1.2. $|\mathcal{M}| = 3/16\phi(n) - t$ and $t < 1/2\sqrt{n}\log n + 5/4$ (i.e., $|\mathcal{M}| \in O(n)$).

For $M \in \mathcal{M}$ define:

$$E_1(M) = \begin{cases} 4(2M+1) & \text{if } \left(\frac{2M+1}{n}\right) = 1\\ 2(2M+1) & \text{if } \left(\frac{2M+1}{n}\right) = -1 \end{cases} \quad (\text{note } \left(\frac{E_1(M)}{n}\right) = 1) \\ E_2(N) \equiv N^{2e} \pmod{n} \quad (0 < E_2(N) < n \text{ and } N \in \mathbb{Z}), \\ D_2(K) \equiv K^d \pmod{n} \quad (0 < D_2(K) < n), \\ D_1(L) = \begin{cases} (L/4-1)/2 & \text{if } L \equiv 0 \pmod{4} \\ ((n-L)/4-1)/2 & \text{if } L \equiv 1 \pmod{4} \\ (L/2-1)/2 & \text{if } L \equiv 2 \pmod{4} \\ ((n-L)/2-1)/2 & \text{if } L \equiv 3 \pmod{4} \end{cases}$$

To encrypt $M \in \mathcal{M}$, the sender computes $C = E_2(E_1(M))$. To decrypt C, the receiver computes $D_1(D_2(C)) = M$. **Theorem 2.1.** If $M \in \mathcal{M}$ then $D_1D_2E_2E_1(M) = M$.

Proof. We have:

 $N = E_1(M)$ with 2 | N, 0 < N < n, and $\left(\frac{N}{n}\right) = 1$ $L = D_2 E_2(N) \equiv N^{2ed} \equiv N^{2m} \equiv N^{\phi(n)/4+1} \equiv \pm N \pmod{n} \quad \text{with } 0 < L < n \text{ and } n \equiv 1 \pmod{4}$ Thus, if L is even, then L = N and if L is odd, then L = n - N. If $L \equiv 0 \pmod{4}$, then $(2M + 1) = N/4 = L/4 \longrightarrow M = (L/4 - 1)/2 = D_1(L)$. If $L \equiv 1 \pmod{4}$, then $2M + 1 = (n - L)/4 \longrightarrow M = ((n - L)/4 - 1)/2 = D_1(L)$. If $L \equiv 2 \pmod{4}$, then $2M + 1 = L/2 \longrightarrow M = (L/2 - 1)/2 = D_1(L)$ If $L \equiv 3 \pmod{4}$, then $2M + 1 = (n - L)/2 \longrightarrow M = D_1(L)$.

We will now show that breaking the encryption scheme is equivalent in difficulty to factoring n.

Lemma 2.2. If n is given as above, then for any $X \in \mathbb{Z}$ there exists $Y \in \mathbb{Z}$ such that $X^2 \equiv Y^2 \pmod{n}$ and $\left(\frac{Y}{n}\right) = -\left(\frac{X}{n}\right)$.

Proof.
$$\left(\frac{-X}{p}\right) = \left(\frac{-1}{p}\right)\left(\frac{X}{p}\right) = -\left(\frac{X}{p}\right)$$
. Let
 $Y \equiv -X \pmod{p}, \quad Y \equiv X \pmod{q}$

Then $Y^2 \equiv X^2 \pmod{n}$ and

$$\left(\frac{Y}{n}\right) = \left(\frac{Y}{p}\right)\left(\frac{Y}{q}\right) = \left(\frac{-X}{p}\right)\left(\frac{X}{q}\right) = -\left(\frac{X}{n}\right) \ .$$

Lemma 2.3. If K = E(M) (here $E = E_2E_1$), then there exists X_1, X_2 such that $X_1 \neq X_2, 0 < X_1, X_2 < n$, $X_1^2 \equiv X_2^2 \equiv K \pmod{n}$ and $\left(\frac{X_1}{n}\right) = \left(\frac{X_2}{n}\right) = -1$.

Proof. Let $N = E_1(M)$ and $Y \equiv N^e \pmod{n}$. We have $K \equiv (N^e)^2 \equiv Y^2 \pmod{n}$ and since $\left(\frac{N}{n}\right) = 1 \longrightarrow \left(\frac{Y}{n}\right) = 1$. By Lemma 2.2 there exists an X such that $X^2 \equiv Y^2 \equiv K \pmod{n}$ and $\left(\frac{X}{n}\right) = -1$. Let $X_1 \equiv X \pmod{n}, 0 < X_1 < n$, and $X_2 = n - X_1$.

Put $\mathcal{X} = \{X \mid X^2 \equiv E(M) \pmod{n}, M \in \mathcal{M}, \left(\frac{X}{n}\right) = -1, 0 < X < n\}$. Then $|X| \ge 2|\mathcal{M}|$ by Lemma 2.3. If we select at random a value of X such that $\left(\frac{X}{n}\right) = -1$ and 0 < X < n (there are $\phi(n)/2$ such X values) then the probability that there exists an $M \in \mathcal{M}$ such that $X^2 \equiv E(M) \pmod{n}$ is about 3/4.

If F is an algorithm which decrypts 1/k of all possible ciphertexts, then we see that we can select at random a value of X (0 < X < n) with $\left(\frac{X}{n}\right) = -1$ such that $E(M) \equiv K \equiv X^2 \pmod{n}$ for some $M \in \mathcal{M}$ and F(K) = M with probability about $\frac{3}{4k}$. We expect to conduct about 4k/3 trials before such an example is found. Put $Y \equiv E_1(M)^e \equiv E_1(F(K))^e \pmod{n}$. Then

$$Y^2 \equiv X^2 \pmod{n}$$
 and $\left(\frac{Y}{n}\right) = 1, \left(\frac{X}{n}\right) = -1$

and $n = pq \mid X^2 - Y^2 \longrightarrow pq \mid (X - Y)(X + Y)$. Now:

- If pq | X − Y, then X ≡ Y (mod pq), and (^X/_n) = (^Y/_n), a contradiction.
 If pq | X + Y, then X ≡ −Y (mod pq), and (^X/_n) = (^{-Y}/_n) = (^Y/_n), a contradiction.

Hence, gcd(X - Y, n) = p, q, i.e., we can factor n.