
THE RABIN-WILLIAMS PKC

1. Description of Rabin-Williams

Public-key encryption scheme provably equivalent to integer factorization (Rabin, Williams 1980).

Modi�cation of Rabin's scheme (similar to RSA using e = 2) with unique decryption.

Lemma 1.1. Let n = pq with p � q � �1 (mod 4): If
�
M
n

�
= 1; then

M�(n)=4 � �1 (mod n)

Proof.
�
M
pq

�
= 1�! �

M
p

�
=
�
M
q

�
: If

�
M
p

�
= 1; then

M
p�1

2 � 1 (mod p)

M
p�1

2

q�1

2 � 1 (mod p) :

Similarly,

M
q�1

2

p�1

2 � 1 (mod q)

and by the CRT we have M�(n)=4 � 1 (mod n):

If
�
M
p

�
= �1; then we use the fact that (�1)(p�1)=2 � �1 (mod p) when p � �1 (mod 4) to argue that

M�(n)=4 � �1 (mod n): �

1.1. Key Generation. Select large primes p; q with p � 3 (mod 8); q � 7 (mod 8); and put n = pq:

Select at random e such that 1 < e < n and gcd(e; �(n)) = 1:

Solve ed � m (mod �(n)) where m = (�(n)=4 + 1)=2:

Public key: fn; eg Private key: fdg

1.2. Encryption and Decryption. De�neM = fM j (2(2M+1) < n and
�
2M+1
n

�
= �1) or (4(2M+1) <

n and
�
2M+1
n

�
= 1)g:

Theorem 1.2. jMj = 3=16�(n)� t and t < 1=2
p
n log n+ 5=4 (i.e., jMj 2 O(n)).

For M 2M de�ne:

E1(M) =

(
4(2M + 1) if

�
2M+1
n

�
= 1

2(2M + 1) if
�
2M+1
n

�
= �1 (note

�
E1(M)

n

�
= 1)

E2(N) � N2e (mod n) (0 < E2(N) < n and N 2 Z);
D2(K) � Kd (mod n) (0 < D2(K) < n);

D1(L) =

8>>><
>>>:
(L=4� 1)=2 if L � 0 (mod 4)

((n� L)=4� 1)=2 if L � 1 (mod 4)

(L=2� 1)=2 if L � 2 (mod 4)

((n� L)=2� 1)=2 if L � 3 (mod 4)

To encrypt M 2M; the sender computes C = E2(E1(M)):

To decrypt C; the receiver computes D1(D2(C)) =M:
1



2. Proof of Equivalence to Factoring

Theorem 2.1. If M 2M then D1D2E2E1(M) =M:

Proof. We have:

N = E1(M) with 2 jN; 0 < N < n; and

�
N

n

�
= 1

L = D2E2(N) � N2ed � N2m � N�(n)=4+1 � �N (mod n) with 0 < L < n and n � 1 (mod 4)

Thus, if L is even, then L = N and if L is odd, then L = n�N:

If L � 0 (mod 4); then (2M + 1) = N=4 = L=4�!M = (L=4� 1)=2 = D1(L):

If L � 1 (mod 4); then 2M + 1 = (n� L)=4�!M = ((n� L)=4� 1)=2 = D1(L):

If L � 2 (mod 4); then 2M + 1 = L=2�!M = (L=2� 1)=2 = D1(L)

If L � 3 (mod 4); then 2M + 1 = (n� L)=2�!M = D1(L): �

We will now show that breaking the encryption scheme is equivalent in di�culty to factoring n:

Lemma 2.2. If n is given as above, then for any X 2 Z there exists Y 2 Z such that X2 � Y 2 (mod n)
and

�
Y
n

�
= ��Xn�:

Proof.
�
�X
p

�
=
�
�1
p

��
X
p

�
= ��Xp �: Let

Y � �X (mod p); Y � X (mod q) :

Then Y 2 � X2 (mod n) and �
Y

n

�
=

�
Y

p

��
Y

q

�
=

��X
p

��
X

q

�
= �

�
X

n

�
:

�

Lemma 2.3. If K = E(M) (here E = E2E1), then there exists X1; X2 such that X1 6= X2; 0 < X1; X2 < n;
X2

1 � X2
2 � K (mod n) and

�
X1

n

�
=
�
X2

n

�
= �1:

Proof. Let N = E1(M) and Y � Ne (mod n): We have K � (Ne)2 � Y 2 (mod n) and since
�
N
n

�
=

1�! �
Y
n

�
= 1: By Lemma 2.2 there exists an X such that X2 � Y 2 � K (mod n) and

�
X
n

�
= �1: Let

X1 � X (mod n); 0 < X1 < n; and X2 = n�X1: �

Put X = fX j X2 � E(M) (mod n);M 2 M;
�
X
n

�
= �1; 0 < X < ng: Then jXj � 2jMj by Lemma 2.3. If

we select at random a value of X such that
�
X
n

�
= �1 and 0 < X < n (there are �(n)=2 such X values) then

the probability that there exists an M 2M such that X2 � E(M) (mod n) is about 3=4:

If F is an algorithm which decrypts 1=k of all possible ciphertexts, then we see that we can select at random
a value of X (0 < X < n) with

�
X
n

�
= �1 such that E(M) � K � X2 (mod n) for some M 2 M and

F (K) = M with probability about 3
4k : We expect to conduct about 4k=3 trials before such an example is

found. Put Y � E1(M)e � E1(F (K))e (mod n): Then

Y 2 � X2 (mod n) and

�
Y

n

�
= 1;

�
X

n

�
= �1

and n = pq jX2 � Y 2�! pq j (X � Y )(X + Y ): Now:

� If pq jX � Y; then X � Y (mod pq); and
�
X
n

�
=
�
Y
n

�
; a contradiction.

� If pq jX + Y; then X � �Y (mod pq); and
�
X
n

�
=
�
�Y
n

�
=
�
Y
n

�
; a contradiction.

Hence, gcd(X � Y; n) = p; q; i.e., we can factor n:

2


