
Keccak and the SHA-3 Standardization

Guido Bertoni1 Joan Daemen1

Michaël Peeters2 Gilles Van Assche1

1STMicroelectronics

2NXP Semiconductors

NIST, Gaithersburg, MD

February 6, 2013

1 / 60

Outline

1

2

3

4

5

6

The beginning

The sponge construction

Inside Keccak

Analysis underlying Keccak

Applications of Keccak, or sponge

Some ideas for the SHA-3 standard

2 / 60

The beginning

Outline

1

2

3

4

5

6

The beginning

The sponge construction

Inside Keccak

Analysis underlying Keccak

Applications of Keccak, or sponge

Some ideas for the SHA-3 standard

3 / 60

The beginning

Cryptographic hash functions

h : {0, 1}* ≤ {0, 1}n

Input message Digest

MD5: n = 128 (Ron Rivest, 1992)

SHA-1: n = 160 (NSA, NIST, 1995)

SHA-2: n → {224, 256, 384, 512} (NSA, NIST, 2001)

4 / 60

The beginning

Our beginning: RadioGatún

Initiative to design hash/stream function (late 2005)
rumours about NIST call for hash functions
forming of Keccak Team
starting point: fixing Panama [Daemen, Clapp, FSE 1998]

RadioGatún [Keccak team, NIST 2nd hash workshop 2006]

more conservative than Panama
variable-length output
expressing security claim: non-trivial exercise

Sponge functions [Keccak team, Ecrypt hash, 2007]

closest thing to a random oracle with a finite state
Sponge construction calling random permutation

5 / 60

The beginning

From RadioGatún to Keccak

RadioGatún confidence crisis (2007-2008)
own experiments did not inspire confidence in RadioGatún
neither did third-party cryptanalysis
[Bouillaguet, Fouque, SAC 2008] [Fuhr, Peyrin, FSE 2009]
follow-up design Gnoblio went nowhere
NIST SHA-3 deadline approaching …
U-turn: design a sponge with strong permutation f

Keccak [Keccak team, SHA-3, 2008]
6 / 60

The sponge construction

Outline

1

2

3

4

5

6

The beginning

The sponge construction

Inside Keccak

Analysis underlying Keccak

Applications of Keccak, or sponge

Some ideas for the SHA-3 standard

7 / 60

The sponge construction

The sponge construction

More general than a hash function: arbitrary-length output
Calls a b-bit permutation f, with b = r + c

r bits of rate
c bits of capacity (security parameter)

8 / 60

The sponge construction

Generic security of the sponge construction

RO-differentiating advantage ∗ N2/2c+1

N is number of calls to f
Proven in [Keccak team, Eurocrypt 2008]
As strong as a random oracle against attacks with N < 2c/2

Bound assumes f is random permutation
It covers generic attacks
…but not attacks that exploit specific properties of f

9 / 60

The sponge construction

Design approach

Hermetic sponge strategy

Instantiate a sponge function

Claim a security level of 2c/2

Mission

Design permutation f without exploitable properties

10 / 60

The sponge construction

How to build a strong permutation

Build it as is an iterated permutation
Like a block cipher

Sequence of identical rounds
Round consists of sequence of simple step mappings

…but not quite
No key schedule
Round constants instead of round keys
Inverse permutation need not be efficient

11 / 60

The sponge construction

Criteria for a strong permutation

Classical LC/DC criteria
Absence of large differential propagation probabilities
Absence of large input-output correlations

Infeasibility of the CICO problem
Constrained Input Constrained Output
Given partial input and partial output, find missing parts

Immunity to
Integral cryptanalysis
Algebraic attacks
Slide and symmetry-exploiting attacks
…

12 / 60

Inside Keccak

Outline

1

2

3

4

5

6

The beginning

The sponge construction

Inside Keccak

Analysis underlying Keccak

Applications of Keccak, or sponge

Some ideas for the SHA-3 standard

13 / 60

Inside Keccak

Keccak

Instantiation of a sponge function
the permutation Keccak-f

7 permutations: b → {25, 50, 100, 200, 400, 800, 1600}
Security-speed trade-offs using the same permutation, e.g.,

SHA-3 instance: r = 1088 and c = 512
permutation width: 1600
security strength 256: post-quantum sufficient

Lightweight instance: r = 40 and c = 160
permutation width: 200
security strength 80: same as SHA-1

14 / 60

Inside Keccak

The state: an array of 5 × 5 × 2ℓ bits

x

y z
state

5 × 5 lanes, each containing 2ℓ bits (1, 2, 4, 8, 16, 32 or 64)

(5 × 5)-bit slices, 2ℓ of them

15 / 60

Inside Keccak

The state: an array of 5 × 5 × 2ℓ bits

x

y z
lane

5 × 5 lanes, each containing 2ℓ bits (1, 2, 4, 8, 16, 32 or 64)

(5 × 5)-bit slices, 2ℓ of them

15 / 60

Inside Keccak

The state: an array of 5 × 5 × 2ℓ bits

x

y z
slice

5 × 5 lanes, each containing 2ℓ bits (1, 2, 4, 8, 16, 32 or 64)

(5 × 5)-bit slices, 2ℓ of them

15 / 60

Inside Keccak

The state: an array of 5 × 5 × 2ℓ bits

x

y z
row

5 × 5 lanes, each containing 2ℓ bits (1, 2, 4, 8, 16, 32 or 64)

(5 × 5)-bit slices, 2ℓ of them

15 / 60

Inside Keccak

The state: an array of 5 × 5 × 2ℓ bits

x

y z
column

5 × 5 lanes, each containing 2ℓ bits (1, 2, 4, 8, 16, 32 or 64)

(5 × 5)-bit slices, 2ℓ of them

15 / 60

Inside Keccak

x, the nonlinear mapping in Keccak-f

“Flip bit if neighbors exhibit 01 pattern”

Operates independently and in parallel on 5-bit rows

Algebraic degree 2, inverse has degree 3

LC/DC propagation properties easy to describe and analyze

16 / 60

Inside Keccak

χ ′, a first attempt at mixing bits

Compute parity cx,z of each column

Add to each cell parity of neighboring columns:

bx,y,z = ax,y,z E cx−1,z E cx+1,z

+ =

column parity θʹ effect

combine

17 / 60

Inside Keccak

Diffusion of χ ′

θʹ

18 / 60

Inside Keccak

Diffusion of χ ′ (kernel)

θʹ

19 / 60

Inside Keccak

Diffusion of the inverse of χ ′

θʹ

20 / 60

Inside Keccak

ι for inter-slice dispersion

We need diffusion between the slices …
ι: cyclic shifts of lanes with offsets

i(i + 1)/2 mod 2ℓ

Offsets cycle through all values below 2ℓ

21 / 60

Inside Keccak

L to break symmetry

XOR of round-dependent constant to lane in origin
Without L, the round mapping would be symmetric

invariant to translation in the z-direction

Without L, all rounds would be the same
susceptibility to slide attacks
defective cycle structure

Without L, we get simple fixed points (000 and 111)

22 / 60

Inside Keccak

A first attempt at Keccak-f

Round function: R = L o ι o χ ′ o x

Problem: low-weight periodic trails by chaining:

θʹ ρ

x: may propagate unchanged
χ ′ : propagates unchanged, because all column parities are 0
ι: in general moves active bits to different slices …
…but not always

23 / 60

Inside Keccak

The Matryoshka property

θʹ ρ

θʹ ρ

Patterns in Q ′ are z-periodic versions of patterns in Q

24 / 60

Inside Keccak

n for disturbing horizontal/vertical alignment

() ()()′ x 0 1 x

ax,y ◦ ax ′ ,y ′ with = ′ y 2 3 y

25 / 60

Inside Keccak

A second attempt at Keccak-f

Round function: R = L o n o ι o χ ′ o x

Solves problem encountered before:

θ ρ π

n moves bits in same column to different columns!

26 / 60

Inside Keccak

Tweaking χ ′ to χ

θ

27 / 60

Inside Keccak

Inverse of χ

θ

Diffusion from single-bit output to input very high

Increases resistance against LC/DC and algebraic attacks

28 / 60

Inside Keccak

Keccak-f summary

Round function:
R = L o x o n o ι o χ

Number of rounds: 12 + 2ℓ
Keccak-f[25] has 12 rounds
Keccak-f[1600] has 24 rounds

Efficiency
high level of parallellism
flexibility: bit-interleaving
software: competitive on wide range of CPU
dedicated hardware: very competitive
suited for protection against side-channel attack

29 / 60

Inside Keccak

Performance in software

Faster than SHA-2 on all modern PC

KeccakTree faster than MD5 on some
platforms

C/b Algo Strength
4.79
4.98
5.89
6.09
8.25
10.02
13.73
21.66

keccakc256treed2
md5
keccakc512treed2
sha1
keccakc256
keccakc512
sha512
sha256

128
< 64
256

< 80
128
256
256
128

[eBASH, hydra6, http://bench.cr.yp.to/]

30 / 60

Inside Keccak

Efficient and flexible in hardware

From Kris Gaj’s presentation at SHA-3, Washington 2012:

31 / 60

Analysis underlying Keccak

Outline

1

2

3

4

5

6

The beginning

The sponge construction

Inside Keccak

Analysis underlying Keccak

Applications of Keccak, or sponge

Some ideas for the SHA-3 standard

32 / 60

Analysis underlying Keccak

Our analysis underlying the design of Keccak-f

Presence of large input-output correlations
Ability to control propagation of differences

Differential/linear trail analysis
Lower bounds for trail weights
Alignment and trail clustering
This shaped χ, n and ι

Algebraic properties
Distribution of # terms of certain degrees
Ability of solving certain problems (CICO) algebraically
Zero-sum distinguishers (third party)
This determined the number of rounds

Analysis of symmetry properties: this shaped L

See [Keccak reference], [Ecrypt II Hash 2011], [FSE 2012]

33 / 60

Analysis underlying Keccak

Third-party cryptanalysis of Keccak

Distinguishers on Keccak-f[1600]
Rounds Work

3 low CICO problem [Aumasson, Khovratovich, 2009]

4 low cube testers [Aumasson, Khovratovich, 2009]

8 2491 unaligned rebound [Duc, Guo, Peyrin, Wei, FSE 2012]

24 21574 zero-sum [Duan, Lai, ePrint 2011] [Boura, Canteaut,
De Cannière, FSE 2011]

Academic-complexity attacks on Keccak
6-8 rounds: second preimage [Bernstein, 2010]

slightly faster than exhaustive search, but huge memory

attacks taking advantage of symmetry
4-round pre-images [Morawiecki, Pieprzyk, Srebrny, FSE 2013]
5-rounds collisions [Dinur, Dunkelman, Shamir, FSE 2013]

34 / 60

Analysis underlying Keccak

Third-party cryptanalysis of Keccak

Practical-complexity attacks on Keccak
Rounds

2 preimages and collisions [Morawiecki, CC]

2 collisions [Duc, Guo, Peyrin, Wei, FSE 2012 and CC]

3 40-bit preimage [Morawiecki, Srebrny, 2010]

3 near collisions [Naya-Plasencia, Röck, Meier, Indocrypt 2011]

4 key recovery [Lathrop, 2009]
4 distinguishers [Naya-Plasencia, Röck, Meier, Indocrypt 2011]

4 collisions [Dinur, Dunkelman, Shamir, FSE 2012 and CC]

5 near-collisions [Dinur, Dunkelman, Shamir, FSE 2012]

CC = Crunchy Crypto Collision and Preimage Contest

35 / 60

Analysis underlying Keccak

Observations from third-party cryptanalysis

Extending distinguishers of Keccak-f to Keccak is not easy
Effect of alignment on differential/linear propagation

Strong: low uncertainty in prop. along block boundaries
Weak: high uncertainty in prop. along block boundaries
Weak alignment in Keccak-f limits feasibility of rebound attacks

Effect of the inverse of the mixing layer χ
χ−1 has very high average diffusion
Limits the construction of low-weight trails over more than a few
rounds

36 / 60

Applications of Keccak, or sponge

Outline

1

2

3

4

5

6

The beginning

The sponge construction

Inside Keccak

Analysis underlying Keccak

Applications of Keccak, or sponge

Some ideas for the SHA-3 standard

37 / 60

Applications of Keccak, or sponge

Regular hashing

Electronic signatures

Data integrity (shaXsum …)

Data identifier (Git, online anti-virus, peer-2-peer …)

38 / 60

Applications of Keccak, or sponge

Salted hashing

Randomized hashing (RSASSA-PSS)

Password storage and verification (Kerberos, /etc/shadow)

39 / 60

Applications of Keccak, or sponge

Salted hashing

Randomized hashing (RSASSA-PSS)
Password storage and verification (Kerberos, /etc/shadow)

…Can be as slow as you like it!

39 / 60

Applications of Keccak, or sponge

Mask generation function

Key derivation function in SSL, TLS
Full-domain hashing in public key cryptography

electronic signatures RSASSA-PSS [PKCS#1]
encryption RSAES-OAEP [PKCS#1]
key encapsulation methods (KEM)

40 / 60

Applications of Keccak, or sponge

Message authentication codes

0 f f

Key

…

Padded message

f ff

MAC

As a message authentication code
Simpler than HMAC [FIPS 198]

Required for SHA-1, SHA-2 due to length extension property
No longer needed for sponge

41 / 60

Applications of Keccak, or sponge

Stream encryption

0 f f

Key IV

f

Key stream

As a stream cipher
Long output stream per IV: similar to OFB mode
Short output stream per IV: similar to counter mode

42 / 60

Applications of Keccak, or sponge

Single pass authenticated encryption

0 f f

Key

…

Padded messageIV

f

Key stream

ff

MAC

Authentication and encryption in a single pass!

Secure messaging (SSL/TLS, SSH, IPSEC …)

43 / 60

Applications of Keccak, or sponge

The duplex construction

Generic security equivalent to Sponge [Keccak Team, SAC 2011]

Applications include:
Authenticated encryption: spongeWrap
Reseedable pseudorandom sequence generator

44 / 60

Applications of Keccak, or sponge

Reseedable pseudorandom sequence generator

Defined in [Keccak Team, CHES 2010] and [Keccak Team, SAC 2011]

Support for forward secrecy by forgetting in duplex:

45 / 60

Applications of Keccak, or sponge

Reseedable pseudorandom sequence generator

Defined in [Keccak Team, CHES 2010] and [Keccak Team, SAC 2011]

Support for forward secrecy by forgetting in duplex:

45 / 60

Some ideas for the SHA-3 standard

Outline

1

2

3

4

5

6

The beginning

The sponge construction

Inside Keccak

Analysis underlying Keccak

Applications of Keccak, or sponge

Some ideas for the SHA-3 standard

46 / 60

Some ideas for the SHA-3 standard Capacity and security strength levels

Output length oriented approach

Output
length

Collision
resistance

Pre-image
resistance

Required
capacity

Relative
perf.

SHA-3
instance

n = 160 s ∗ 80 s ∗ 160 c = 320 ×1.250 SHA3n160
n = 224 s ∗ 112 s ∗ 224 c = 448 ×1.125 SHA3n224
n = 256 s ∗ 128 s ∗ 256 c = 512 ×1.063 SHA3n256
n = 384 s ∗ 192 s ∗ 384 c = 768 ÷1.231 SHA3n384
n = 512 s ∗ 256 s ∗ 512 c = 1024 ÷1.778 SHA3n512

n s ∗ n/2 s ∗ n c = 2n × 1600−c
1024

s: security strength level [NIST SP 800-57]

These SHA-3 instances address
multiple security strengths each
levels outside of [NIST SP 800-57] range

Performance penalty!

47 / 60

Some ideas for the SHA-3 standard Capacity and security strength levels

Security strength oriented approach

Security
strength

Collision
resistance

Pre-image
resistance

Required
capacity

Relative
perf.

SHA-3
instance

s = 80 n ⊕ 160 n ⊕ 80 c = 160 ×1.406 SHA3c160
s = 112 n ⊕ 224 n ⊕ 112 c = 224 ×1.343 SHA3c224
s = 128 n ⊕ 256 n ⊕ 128 c = 256 ×1.312 SHA3c256
s = 192 n ⊕ 384 n ⊕ 192 c = 384 ×1.188 SHA3c384
s = 256 n ⊕ 512 n ⊕ 256 c = 512 ×1.063 SHA3c512

s n ⊕ 2s n ⊕ s c = 2s × 1600−c
1024 SHA3[c=2s]

s: security strength level [NIST SP 800-57]

These SHA-3 instances
are consistent with philosophy of [NIST SP 800-57]
provide a one-to-one mapping to security strength levels

Higher efficiency

48 / 60

Some ideas for the SHA-3 standard Capacity and security strength levels

Choosing the capacity

Ideas for discussion

1 Let SHA-3 be a sponge
Allow freedom in choosing c
Allow variable output length

2 Decouple security and output length
Set minimum capacity c ⊕ 2s for [SP 800-57]’s level s

3 Base naming scheme on security level
For instance SHA3c180 for Keccak[c = 180]

4 For SHA-2-n drop-in replacements, avoid slow instances
Example option 1: c = n
Example option 2: c = min{2n, 576}
Example option 3: c = 576

49 / 60

Some ideas for the SHA-3 standard Capacity and security strength levels

Choosing the capacity

Ideas for discussion

1 Let SHA-3 be a sponge
Allow freedom in choosing c
Allow variable output length

2 Decouple security and output length
Set minimum capacity c ⊕ 2s for [SP 800-57]’s level s

3 Base naming scheme on security level
For instance SHA3c180 for Keccak[c = 180]

4 For SHA-2-n drop-in replacements, avoid slow instances
Example option 1: c = n
Example option 2: c = min{2n, 576}
Example option 3: c = 576

49 / 60

Some ideas for the SHA-3 standard Capacity and security strength levels

Choosing the capacity

Ideas for discussion

1 Let SHA-3 be a sponge
Allow freedom in choosing c
Allow variable output length

2 Decouple security and output length
Set minimum capacity c ⊕ 2s for [SP 800-57]’s level s

3 Base naming scheme on security level
For instance SHA3c180 for Keccak[c = 180]

4 For SHA-2-n drop-in replacements, avoid slow instances
Example option 1: c = n
Example option 2: c = min{2n, 576}
Example option 3: c = 576

49 / 60

Some ideas for the SHA-3 standard Capacity and security strength levels

Choosing the capacity

Ideas for discussion

1 Let SHA-3 be a sponge
Allow freedom in choosing c
Allow variable output length

2 Decouple security and output length
Set minimum capacity c ⊕ 2s for [SP 800-57]’s level s

3 Base naming scheme on security level
For instance SHA3c180 for Keccak[c = 180]

4 For SHA-2-n drop-in replacements, avoid slow instances
Example option 1: c = n
Example option 2: c = min{2n, 576}
Example option 3: c = 576

49 / 60

Some ideas for the SHA-3 standard Structure

Structuring the standard

Permutation Primitive

Sponge Duplex Construction

Hashing MAC PRNG Auth. Enc. Mode

Ideas for discussion

1 Standardize Keccak-f, constructions and modes separately
Constructions and modes defined independently of Keccak-f
Like block ciphers and their modes
(It seems you have this in mind too.)

2 Propose a guideline for interfaces between these

50 / 60

Some ideas for the SHA-3 standard Input formatting

Multiple instances of Keccak

Sponge Duplex

Valid sponge input, rate-separated

Multi-rate padding

c1 ̸= c2 ≥ Keccak[c = c1] and Keccak[c = c2] independent

Joint security level determined by min{c1, c2}
[Keccak Team, SAC 2011]

51 / 60

Some ideas for the SHA-3 standard Input formatting

Domain separation

Sponge Duplex

Valid sponge input, rate- and mode-separated

Idea for discussion

1 Foresee domain separation from the start
To prevent potential clashes between different modes
If possible, anyone can define his/her domain

52 / 60

Some ideas for the SHA-3 standard Input formatting

Example: domain separation with namespaces

Basic idea: prefix input with namespace identifier (URI)
Payload syntax determined by namespace
Inspired from XML [http://www.w3.org/TR/REC-xml-names/]

Presence of namespace indicated by suffix
plain input||0||10*1
UTF8(URI)||08||specifically-formatted input||1||10*1

53 / 60

Some ideas for the SHA-3 standard Parallel hashing

Parallel hashing

Pros
Can exploit parallelism in SIMD instructions
Can exploit parallelism in multi-core or distributed systems
Induce no throughput penalty when less parallelism available (for
long messages)

Cons
Needs more memory

Induce a performance penalty for short messages

54 / 60

Some ideas for the SHA-3 standard Parallel hashing

A universal way to encode a tree

Two related, yet distinct, aspects to specify:
the exact (parameterized) tree layout and processing;
the input formatting of leaves and nodes.

1

2

Goals
Address the input formatting only
Be universal
≥ agnostic of future tree structure specifications
Be sound [Keccak Team, ePrint 2009/210]

Extra features
Flexible ways to spread message bits on nodes, e.g.,

interleaved 64-bit pieces for SIMD
1MB chunks for independent processes

Possible re-use of hash function context (“connected hops”)

55 / 60

Some ideas for the SHA-3 standard Parallel hashing

A universal way to encode a tree

Two related, yet distinct, aspects to specify:
the exact (parameterized) tree layout and processing;
the input formatting of leaves and nodes.

Goals
Address the input formatting only
Be universal

1

2

≥ agnostic of future tree structure specifications
Be sound [Keccak Team, ePrint 2009/210]

Extra features
Flexible ways to spread message bits on nodes, e.g.,

interleaved 64-bit pieces for SIMD
1MB chunks for independent processes

Possible re-use of hash function context (“connected hops”)

55 / 60

Some ideas for the SHA-3 standard Parallel hashing

A universal way to encode a tree

Two related, yet distinct, aspects to specify:
the exact (parameterized) tree layout and processing;
the input formatting of leaves and nodes.

Goals
Address the input formatting only
Be universal

1

2

≥ agnostic of future tree structure specifications
Be sound [Keccak Team, ePrint 2009/210]

Extra features
Flexible ways to spread message bits on nodes, e.g.,

interleaved 64-bit pieces for SIMD
1MB chunks for independent processes

Possible re-use of hash function context (“connected hops”)

55 / 60

Some ideas for the SHA-3 standard Parallel hashing

Example 1/3

CVi = h(Mi||{leaf}||nonfinal)

h(M0||{leaf}||CV1||CV2||CV3||{#C = 4, CH, I = 64}||final)

56 / 60

Some ideas for the SHA-3 standard Parallel hashing

Example 2/3

CVi1 = h(Mi1||{leaf}||nonfinal)

CVi = h(Mi0||{leaf}||CVi1||{#C = 2, CH}||nonfinal)

h(CV0||CV1||{#C = 2}||final)

57 / 60

Some ideas for the SHA-3 standard Parallel hashing

Example 3/3

h(M||{leaf}||final)

58 / 60

Some ideas for the SHA-3 standard Parallel hashing

Parallel hashing in SHA-3

h(M||{leaf}||final)

Idea for discussion

1 Even if no parallel hashing mode is standardized at first
Foresee it in the input formatting
Make default sequential hashing a particular case of parallel
hashing (i.e., a single root node)
[Keccak Team, ePrint 2009/210]

59 / 60

Conclusion

Questions?

http://sponge.noekeon.org/

http://keccak.noekeon.org/

60 / 60

