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Information Theory Introduction

Information Theory

Claude Shannon is widely hailed as the “father of information theory”.

seminal work in the late 1940’s and early 1950’s in this field

credited with turning cryptography into a scientific discipline.

in addition, modern satellite transmission would not be possible
without his work

Information theory measures the amount of information conveyed by a
piece of data.

captures how much partial information you need to have in order to
obtain full information.

Fundamental tools in assessing the security of cryptosystems
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Information Theory Introduction

Partial Information

For example, partial information reveals the full word or phrase in:

Abbreviations — “LOL”

Contractions — “I’ve”

Omitted vowels — “BSKTBLL”

Glyphs — smiley face

How much partial information is enough? E.g. “BLL” could mean “ball”,
“bell”, “bill”, “bull”, . . .
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Information Theory Probability Theory

Definitions

Definition 1

Sample space – a finite set X = {X1,X2, . . . ,Xn} whose elements are
called outcomes

Event – a subset E of X
Probability that event E occurs: p(E ) = |E|/|X |

Probability distribution on X – a complete set of probabilities; i.e.

p(X1), p(X2), . . . , p(Xn) ≥ 0 with
n∑

i=1

p(Xi ) = 1.

Random variable – a pair X consisting of a sample space X and a
probability distribution on X . The (a priori) probability that X takes on
the value x ∈ X is denoted by p(X = x) or simply p(x).
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Information Theory Probability Theory

Joint and Conditional Probability

Let X and Y be random variables.

Definition 2

Joint probability p(x , y) – probability that p(X = x) and p(Y = y).

Conditional probability p(x |y) is the probability that p(X = x) given that
p(Y = y).

Joint and conditional probabilities are related as follows:

p(x , y) = p(x |y)p(y) .
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Information Theory Probability Theory

Bayes Theorem

Theorem 1 (Bayes Theorem)

If p(y) > 0, then

p(x |y) =
p(x)p(y |x)

p(y)
.

Proof.

Clearly p(x , y) = p(y , x), so p(x |y)p(y) = p(y |x)p(x). Now divide by
p(y).
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Information Theory Probability Theory

Independence

Definition 3

Two random variables X ,Y are independent if p(x , y) = p(x)p(y).

Example 4

A fair coin toss is modeled by a random variable on the sample space
X = {heads, tails} so that p(heads) = p(tails) = 1/2. Two fair coin
tosses in a row represent independent events as each of the 4 possible
outcomes has (joint) probability 1/4.

Corollary 2

X and Y are independent if and only of p(x |y) = p(x) for all
x ∈ X , y ∈ Y with p(y) > 0.
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Information Theory Perfect Secrecy

Idea of Perfect Secrecy

Recall the notion of unconditional security which requires that an
adversary with unlimited computing power cannot defeat the system. This
relates to perfect secrecy.

Intuitively, for perfect secrecy, ciphertexts should reveal no information
whatsoever about plaintexts.

Theoretically unbreakable, even with infinite computational resources!
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Information Theory Perfect Secrecy

Setup

We consider the following three probability distributions:

A random variable on the message space M; plaintexts M occur with
probabilities p(M) such that

∑
M∈M p(M) = 1.

A random variable on the ciphertext space C; ciphertexts C occur
with probabilities p(C ) such that

∑
C∈C p(C ) = 1.

A random variable on the key space K; keys K are selected with prior
probabilities p(K ) such that

∑
K∈K p(K ) = 1.

We assume that the random variables on K and M are independent, as
keys are usually chosen before the plaintext is ever seen.

Most of the time, each key is selected with equal likelyhood 1/|K|,
regardless of the nature of the messages to be encrypted.
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Information Theory Perfect Secrecy

Notation

We consider the following probabilities:

p(M) — (a priori) probability that plaintext M is sent.

p(C ) – probability that ciphertext C was received.

p(M|C ) — probability that plaintext M was sent, given that
ciphertext C was received.

p(C |M) – probability that ciphertext C was received, given that
plaintext M was sent.

p(K ) – probability that key K was chosen.
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Information Theory Perfect Secrecy

Definition

Definition 5 (Perfect Secrecy)

A cryptosystem provides perfect secrecy if p(M|C ) = p(M) for all M ∈M
and C ∈ C with p(C ) > 0.

Formally, perfect secrecy means exactly that the random variables on M
and C are independent. Informally, this implies that knowing the ciphertext
C gives us no information about M.

The probabilities p(M|C ) and p(M) are hard to quantify (we may not
know anything about which plaintexts occur). Bayes’ Theorem relates
these quantities to p(C |M) and p(C ), and these probabilities turn out to
be easier to quantify.
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Information Theory Perfect Secrecy

Equivalent Definition

Theorem 3

A cryptosystem provides perfect secrecy if and only if p(C |M) = p(C ) for
all M ∈M,C ∈ C with p(M) > 0 and p(C ) > 0.

Proof.

Let M ∈M and C ∈ C with p(M) > 0 and p(C ) > 0. By Bayes’
Theorem,

p(C |M) =
p(C )p(M|C )

p(M)
.

Perfect secrecy means exactly that p(M|C ) = p(M), which is the case if
and only if p(C |M) = p(C ).
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Information Theory Perfect Secrecy

Intuition

Informally, perfect secrecy means that the probability of receiving a
particular ciphertext C , given that M was sent (enciphered with some key
K ) is the same as the probability of receiving C given that any other
message M was sent (possibly enciphered under another key).

Example 6

Suppose we have 3 messages, i.e.M = {M1,M2,M3}, and 3 ciphertexts
C = {C1,C2,C3}, and all occur with equal probabilities
(p(M1) = p(M2) = p(M3) = 1/3 and p(C1) = p(C2) = p(C3) = 1/3).

Also, suppose that we have perfect secrecy, i.e. p(M|C ) = p(M) = 1/3, so
by Theorem 3, p(C |M) = p(C ) = 1/3.

This means that Ci corresponds to Mj with equal probability for all i , j .
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Information Theory Perfect Secrecy

Illustration of the Example

Each ciphertext (Ci ) could be the encryption of any of the messages with
equal probability.

M1

M2

M3

C1

C2

C3
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Computing p(C |M) and p(C)

Computing p(C |M) and p(C )

Recall that perfect secrecy is equivalent to p(C |M) = p(C ) for all
messages M and all ciphertexts C that occur.

How can we determine p(C |M) and p(C )?

For any message M ∈M, we have

p(C |M) =
∑
K∈K

EK (M)=C

p(K ) .

That is, p(C |M) is the sum of probabilities p(K ) over all those keys
K ∈ K that encipher M to C .

Mike Jacobson (University of Calgary) CPSC/PMAT 669 Topic 2 16 / 46



Computing p(C |M) and p(C)

Number of Keys in the Sum

Usually there is at most one key K with EK (M) = C for given M and C .

However, some ciphers can transform the same plaintext into the same
ciphertext with different keys.

A monoalphabetic substitution cipher will transform a message into
the same ciphertext with different keys if the only differences between
the keys occur for characters which do not appear in the message

Eg. key1 = ECONOMICS, key2 = ECONOMY, and we encrypt a
message of at most 6 characters).
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Computing p(C |M) and p(C)

Example: Computing p(C |M)

M = {a, b}, K = {K1,K2,K3}, and C = {1, 2, 3, 4}. Encryption is given
by the following table:

Key M = a M = b

K1 C = 1 C = 2
K2 C = 2 C = 3
K3 C = 3 C = 4

Thus,
p(1|a) = p(K1) , p(1|b) = 0 ,
p(2|a) = p(K2) , p(2|b) = p(K1) ,
p(3|a) = p(K3) , p(3|b) = p(K2) ,
p(4|a) = 0 , p(4|b) = p(K3) .
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Computing p(C |M) and p(C)

Description of EK

Consider a fixed key K . The mathematical description of the set of all
possible encryptions (of any plaintext) under this key K is exactly the
image of EK , i.e. the set EK (M) = {EK (M) | M ∈M}.

In the previous example, we have

EK1(M) = {1, 2}
EK2(M) = {2, 3}
EK3(M) = {3, 4}.
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Computing p(C |M) and p(C)

Computation of p(C )

For a key K and ciphertext C ∈ EK (M), consider the probability
p(DK (C )) that the message M = DK (C ) was sent. Then

p(C ) =
∑
K∈K

C∈EK (M)

p(K )p(DK (C )) .

That is, p(C ) is the sum of probabilities over all those keys K ∈ K under
which C has a decryption under key K , each weighted by the probability
that that key K was chosen.
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Computing p(C |M) and p(C)

Example, cont.

The respective probabilities of the four ciphertexts 1, 2, 3, 4 are:

p(1) = p(K1)p(a), p(2) = p(K1)p(b) + p(K2)p(a)

p(3) = p(K2)p(b) + p(K3)p(a), p(4) = p(K3)p(b)

If we assume that every key and every message is equally probable,
i.e. p(K1) = p(K2) = p(K3) = 1/3 and p(a) = p(b) = 1/2, then

p(1) =
1

3
· 1

2
=

1

6
, p(2) =

1

3
· 1

2
+

1

3
· 1

2
=

1

3

p(3) =
1

3
· 1

2
+

1

3
· 1

2
=

1

3
, p(4) =

1

3
· 1

2
=

1

6

Note that p(1|a) = p(K1) = 1/3 6= 1/6 = p(1), so this system does not
provide perfect secrecy.
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Computing p(C |M) and p(C)

Necessary Condition for Perfect Secrecy

Theorem 4

If a cryptosystem has perfect secrecy, then |K| ≥ |M|.

Informal argument: suppose |K| < |M|.
Then there is some message M such that for a given ciphertext C , no
key K encrypts M to C .

This means that the sum defining p(C |M) is empty, so p(C |M) = 0.

But p(C ) > 0 for all ciphertexts of interest, so p(C |M) 6= p(C ), and
hence no perfect security. (The cryptanalyst could eliminate certain
possible plaintext messages from consideration after receiving a
particular ciphertext.)
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Computing p(C |M) and p(C)

Proof of the Theorem

Assume perfect secrecy. Fix a ciphertext C0 that is the encryption of some
message under some key (i.e. actually occurs as a ciphertext).

We first claim that for every key K , there is a message M that encrypts to
C0 under key K . Since C0 occurs as a ciphertext, C0 = EK0(M0) for some
key K0 and message M0, so by perfect secrecy,

p(C0) = p(C0|M0)

=
∑
K∈K

EK (M)=C0

p(K )

= p(K0) + possibly other terms in the sum ≥ p(K0) > 0 .
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Computing p(C |M) and p(C)

Proof, cont.

Again by perfect secrecy, for every other message M ∈M,

0 < p(C0) = p(C0|M) =
∑
K∈K

EK (M)=C0

p(K ).

In other words, for every M, there is at least one non-zero term in that
sum, i.e. there exists at least one key K that encrypts M to C0.

Moreover, different messages that encrypt to C0 must do so under
different keys (as EK (M1) = EK (M2) implies M1 = M2). So we have at
least as many keys as messages.

(Formally, consider the set K0 = {K ∈ K | C0 ∈ EK (M)} ⊆ K. Then we
have shown that the map K0 →M via K 7→ M where EK (M) = C0 is
well-defined and surjective. Hence |K| ≥ |K0| ≥ |M|.)
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Computing p(C |M) and p(C)

Shannon’s Theorem

Theorem 5 (Shannon’s Theorem, 1949/50)

A cryptosystem with |M| = |K| = |C| has perfect secrecy if and only if
p(K ) = 1/|K| (i.e. every key is chosen with equal likelihood) and for every
M ∈M and every C ∈ C, there exists a unique key K ∈ K such that
EK (M) = C.

Proof.

See Theorem 2.8, p. 38, in Katz & Lindell.
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The Vernam One-Time Pad

One-Time Pad

Generally attributed to Vernam (1917, WW I) who patented it, but recent
research suggests the technique may have been used as early as 1882

in any case, it was long before Shannon

It is the only substitution cipher that does not fall to statistical analysis.
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The Vernam One-Time Pad

The One-Time Pad

Definition 7 (Vernam one-time pad)

Let M = C = K = {0, 1}n (bit strings of some fixed length n). Encryption
of M ∈ {0, 1}n under key K ∈ {0, 1}n is bitwise XOR, i.e.

C = M ⊕ K .

Decryption of C under K is done the same way, i.e. M = C ⊕ K , since
K ⊕ K = (0, 0, . . . , 0).
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The Vernam One-Time Pad

Security of the One-Time Pad

Theorem 6

The one-time pad provides perfect secrecy if each key is chosen with equal
likelihood. Under this assumption, each ciphertext occurs with equal
likelihood (regardless of the probability distribution on the plaintext space).

This means that in the one-time pad, any given ciphertext can be
decrypted to any plaintext with equal likelihood (defn of perfect secrecy).
There is no “meaningful” decryption; even exhaustive search doesn’t help.
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The Vernam One-Time Pad

Proof of the Theorem

Proof of Theorem 6.

We have |M| = |C| = |K| = 2n, and for every M,C ∈ {0, 1}n, there exists
a unique key K that encrypts M to C , namely K = M ⊕ C . By Shannon’s
Theorem 5, we have prefect secrecy.

Now let M,C ∈ {0, 1}n be arbitrary. Then by perfect secrecy,

p(C ) = p(C |M) =
∑

K∈{0,1}n
M⊕K=C

p(K )

Now p(K ) = 2−n for all keys K , and the sum only has one term
(corresponding to the unique key K = M ⊕ C ). Hence p(C ) = 2−n for
every C ∈ {0, 1}n.
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The Vernam One-Time Pad

Cryptanalysis of the One-Time Pad

It is imperative that each key is only used once:

Immediately falls to a KPA: if a plaintext/ciphertext pair (M,C ) is
known, then the key is K = M ⊕ C .

Suppose K were used twice:

C1 = M1 ⊕ K ,C2 = M2 ⊕ K =⇒ C1 ⊕ C2 = M1 ⊕M2 .

Note that C1 ⊕ C2 = M1 ⊕M2 is just a coherent running key cipher
(adding two coherent texts, M1 and M2), which as we have seen is
insecure.

For the same reason, we can’t use shorter keys and “re-use” portions of
them. Keys must be randomly chosen and at least as long as messages.
This makes the one-time pad impractical.
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The Vernam One-Time Pad

Practical Issues

Main disadvantages of one-time pad:

requires a random key which is as long as the message

each key can be used only once.

One-time schemes are used when perfect secrecy is crucial and practicality
is less of a concern, for example, Moscow-Washington hotline.
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The Vernam One-Time Pad

One-Time Pad: Conclusion

The major problem with the one-time pad is the cost. As a result, we
generally rely on computationally secure ciphers.

These ciphers would succumb to exhaustive search, because there is a
unique “meaningful” decipherment.

The computational difficulty of finding this solution foils the
cryptanalyst.

A proof of security does not exist for any proposed computationally
secure system.
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Entropy

Measuring Information

Recall that information theory captures the amount of information in a
piece of text.

Measured by the average number of bits needed to encode all possible
messages in an optimal prefix-free encoding.

optimal – the average number of bits is as small as possible

prefix-free – no code word is the beginning of another code word
(e.g. can’t have code words 01 and 011 for example)

Formally, the amount of information in an outcome is measured by the
entropy of the outcome (function of the probability distribution over the
set of possible outcomes).
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Entropy

Example

The four messages

UP, DOWN, LEFT, RIGHT

could be encoded in the following ways:

String Character Numeric Binary

“UP” “U” 1 00
“DOWN” “D” 2 01
“LEFT” “L” 3 10
“RIGHT” “R” 4 11

(40 bits) (8 bits) (16 bits) (2 bits)
(5 char string) 8-bit ASCII (2 byte integer) 2 bits
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Entropy

Coding Theory

In the example, all encodings carry the same information (which we will be
able to measure), but some are more efficient (in terms of the number of
bits required) than others.

Note: Huffmann encoding can be used to improve on the above example
if the directions occur with different probabilities.

This branch of mathematics is called coding theory (and has nothing to do
with the term “code” defined previously).
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Entropy

Entropy

Definition 8

Let X be a random variable taking on the values X1,X2, . . . ,Xn with a
probability distribution

p(X1), p(X2), . . . , p(Xn) where
n∑

i=1

p(Xi ) = 1

The entropy of X is defined by the weighted average

H(X ) =
n∑

i=1
p(Xi )6=0

p(Xi ) log2
1

p(Xi )
= −

n∑
i=1

p(Xi ) 6=0

p(Xi ) log2 p(Xi ) .
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Entropy

Intuition

• An event occurring with prob. 2−n can be optimally encoded with n bits.

• An event occurring with probability p can be optimally encoded with
log2(1/p) = − log2(p) bits.

• The weighted sum H(X ) is the expected number of bits (i.e. the amount
of information) in an optimal encoding of X (i.e. one that minimizes the
number of bits required).

• If X1,X2, . . . ,Xn are outcomes (e.g. plaintexts, ciphertexts, keys)
occurring with respective probabilities p(X1), p(X2), . . . , p(Xn), then H(X )
is the amount of information conveyed about these outcomes.
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Entropy

Example 1

Suppose n > 1 and p(Xi ) > 0 for all i . Then

0 < p(Xi ) < 1 (i = 1, 2, . . . , n)

1

p(Xi )
> 1

log2
1

p(Xi )
> 0,

hence H(X ) > 0 if n > 1.

If there are at least 2 outcomes, both occurring with nonzero probability,
then either one of them conveys information.
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Entropy

Example 2

Suppose n = 1. Then

p(X1) = 1,
1

p(X1)
= 1, log2

1

p(X1)
= 0 =⇒ H(X ) = 0 .

One single possible outcome conveys no new information (you already
know what it’s going to be).

In fact, for arbitrary n, H(X ) = 1 if and only of pi = 1 for exactly one i
and pj = 0 for all j 6= i .
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Entropy

Example 3

Suppose there are two possible outcomes which are equally likely:

p(heads) = p(tails) =
1

2
,

H(X ) =
1

2
log2 2 +

1

2
log2 2 = 1 .

Seeing either outcome conveys exactly 1 bit of information (heads or tails).
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Entropy

Example 4

Suppose we have

p(UP) =
1

2
, p(DOWN) =

1

4
, p(LEFT ) =

1

8
, p(RIGHT ) =

1

8
.

Then

H(X ) =
1

2
log2 2 +

1

4
log2 4 +

1

8
log2 8 +

1

8
log2 8

=
1

2
+

2

4
+

3

8
+

3

8
=

14

8
=

7

4
= 1.75 .

An optimal prefix-free (Huffman) encoding is

UP = 0, DOWN = 10, LEFT = 110, RIGHT = 111 .

Because UP is more probable than the other messages, receiving UP
conveys less information than receiving one of the other messages. The
average amount of information received is 1.75 bits.
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Entropy

Example 5

Suppose we have n outcomes which are equally likely: p(Xi ) = 1/n.

H(X ) =
n∑

i=1

1

n
log2 n = log2 n .

So if all outcomes are equally likely, then H(X ) = log2 n.

If n = 2k (e.g. each outcome is encoded with k bits), then H(X ) = k .
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Entropy

Application to Cryptography

For plaintext space M, H(M) measures the uncertainty of plaintexts.

Gives the amount of partial information that must be learned about a
message in order to know its whole content when it has been

distorted by a noisy channel (coding theory) or

hidden in a ciphertext (cryptography)

For example, consider a ciphertext C = X$7PK that is known to
correspond to a plaintext M ∈M = { “heads”,“tails”}.

H(M) = 1, so the cryptanalyst only needs to find the distinguishing
bit in the first character of M, not all of M.

Mike Jacobson (University of Calgary) CPSC/PMAT 669 Topic 2 43 / 46

Entropy

Maximal Entropy

Recall that the entropy of n equally likely outcomes (i.e. each occurring
with probability 1/n) is log2(n). This is indeed the maximum:

Theorem 7

H(X ) is maximized if and only if all outcomes are equally likely. That is,
for any n, H(X ) = log2(n) is maximal if and only if p(Xi ) = 1/n for
1 ≤ i ≤ n. H(X ) = 0 is minimized if and only if p(Xi ) = 1 for or exactly
one i and p(Xj) = 0 for all j 6= i .

Intuitively, H(X ) decreases as the distribution of messages becomes
increasingly skewed.
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Entropy

Idea of Proof

(This is not a complete proof! The full proof uses induction on n or
Jensen’s inequality.)

Idea.

Suppose p(X1) > 1/n, p(X2) < 1/n, and p(Xi ) is fixed for i > 2. Set
p = p(X1), then p(X2) = 1− p − ε with ε = p(X3) + · · ·+ p(Xn), and

H = −p log(p)− (1− p − ε) log(1− p − ε)− ε log(ε)

dH

dp
= − log p − 1 + log(1− p − ε) + 1

= log
1− p − ε

p
= 0 when p = (1− ε)/2, or p(X1) = p(X2)

Note that dH/dP > 0 for 0 < p < (1− ε)/2 and dH/dP < 0 for
(1− ε)/2 < p < 1, so p(X1) = p(X2) is a maximum. Also, H approaches
the maximum as p(X1) and p(X2) get closer together.
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Entropy

Notes

For a key space K, H(K) measures the amount of partial information that
must be learned about a key to actually uncover it (e.g. the number of bits
that must be guessed correctly to recover the whole key).

For a k bit key, the best scenario is that all k bits must be guessed
correctly to know the whole key (i.e. no amount of partial information
reveals the key, only full information does).

Entropy of the random variable on the key space should be maximal.

Previous theorem: happens exactly when each key is equally likely.

Best strategy to select keys in order to give away as little as possible
is to choose them with equal likelihood (uniformly at random).

Cryptosystems are assessed by their key entropy, which ideally should just
be the key length in bits (i.e. maximal).
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