CPSC/PMAT 669

Product Ciphers, Block Ciphers, AES

Mike Jacobson
Department of Computer Science
University of Calgary
Topic 3

Product Ciphers

Shannon also introduced the idea of product ciphers (multiple encryption):

Definition 1 (Product cipher)

The product of two ciphers is the result of applying one cipher followed by the other.

AKA superencipherment and various other names.

Outline

Product CiphersBlock Ciphers- The Data Encryption Standard and 3DES
- The Advanced Encryption Standard (AES)Attacks on Block Ciphers
- Exhaustive Attacks
- Meet-in-the-Middle Attack on Double Encryption
- Analytic AttacksStream CiphersModes of Operation for Block Ciphers

Properties of Product Ciphers

If different ciphers are used in a product cipher, ciphertexts of one cipher need to have the correct format to be plaintexts for the next cipher to be applied.

- This is composition of encryption maps.

Applying a product cipher potentially increases security. E.g. n-fold encryption with one cipher and n keys potentially corresponds to a cipher that has n times longer keys.

Of course it also results in a loss of speed by a factor of n, but this might be worth it for added security.

Caveat

Confusion and Diffusion
 Product Ciphers

Shannon suggested applying two simple ciphers with a fixed mixing transformation (transposition) in between to:

- diffuse language redundancy into long term statistics, and to
- confuse the cryptanalyst by making relation between redundancy of the ciphertext C and the description of the key K very complex.

Definition 2 (Confusion)

Make the relationship between the key and ciphertext as complex as possible (accomplished by applying substitutions or S-boxes).

Definition 3 (Diffusion)

Dissipate the statistical properties of the plaintext across the ciphertext (accomplished by applying applying transpositions or P-boxes).

Examples of Product Ciphers

- ADFGX/ADFGVX Ciphers (employed by the Germans in WW I).
- Hayhanen Cipher - Hayanan was a Russian spy caught in New York in the 1950's. The FBI couldn't break it!

Example 4

IBM's Lucifer system, uses permutations (transpositions) on large blocks for the mixing transformation, and substitution on small blocks for confusion.

Feistel originally wanted to call the product cipher "Dataseal". IBM instead shortened the term demonstration cipher to "Demon." Later, it was changed to Lucifer, because it retained the "evil atmosphere" of Demon, and contained the word cipher.
Be careful with this reasoning!

Note 1

The product of two substitution ciphers is a substitution cipher. The product of two transposition ciphers is a transposition cipher.

Such ciphers are closed under encryption, so multiple encryption under different keys provides no extra security:
E.g. double encryption $C=E_{K_{1}}\left(E_{K_{2}}(M)\right)=E_{K_{3}}(M)$ for a third key K_{3}

Mike Jacobson (University of Calgary)

Lucifer: Complete Cipher

Error Propagation

The Lucifer system simply consisted of a number of P and S boxes in alternation.

Example 6

Lucifer has good diffusion and error propagation. The thicker lines in the graphic indicate ' 1 ' bits. The ' 1 ' input bit dissipates over the entire ciphertext.

Aso, if the first ' 1 ' bit is changed to a ' 0 ', then half the bits in the output are affected.

Note: All modern symmetric key ciphers in use are product ciphers.

Lucifer demonstrates graphically not only the difffusion properties of Lucifer, but also the idea of error propagation.

Definition 5 (Error Propagation)

The degree to which a change in the input leads to changes in the output.

Good error propagation is a desirable property of a cryptosystem (a user can easily tell if a message has been modified).

Not good for decryption though (one error in the process should still mostly decrypt correctly).

Block Ciphers

Block Ciphers

All modern ciphers in use are block ciphers (although not necessarily used as such - we'll talk about modes of operation of block ciphers later).

Definition 7 (Block cipher)

Encrypts plaintext blocks of some fixed length to ciphertext blocks of some fixed (possibly different) length.

Usually, a message M will be larger than the plaintext block length, and must hence be divided into a series of sequential message blocks $M_{1}, M_{2}, \ldots, M_{n}$ of the desired length.

- A block cipher operates on these blocks one at a time.

Examples of Block Ciphers

NIST Publications

Example 8

The shift cipher is a block cipher where the blocks consists of one character (i.e. 8 bits on 32-bit architecture, 16 bits on 64-bit architecture)

Two main block ciphers in use today:
(1) Data Encryption Standard (DES)

- 64-bit plaintext blocks, 64-bit ciphertext blocks, 64-bit keys (56 actual key bits, 8 parity)
- obsolete, so now used in triple encipherment as 3DES
(2) Advanced Encryption Standard (AES)
- 128-bit plaintext and ciphertext blocks, 128, 192, or 256 -bit keys
- Current NIST-endorsed standard, widely used
- NIST: National Institute of Standards and Technology (formerly National Bureau of Standards (NBS))
- FIPS: Federal Information Processing Register

Everything about NIST's cryptographic standards, recommendations, and guidance can be found at the NIST Cryptographic Toolkit website http://csrc.nist.gov/CryptoToolkit.

- Extremely useful website for the practicing cryptographer.
- There is a link on the "external links" page on the course website.

History of DES

Assessment of DES

Data encryption standard:

- DES was developed by IBM around 1972.
- NBS made solicitations to IBM in 1973/1974 concerning the use of this as a public standard, in response to corporate needs for securing information.
- IBM and the National Security Agency (NSA) secretly evaluated DES for security.
- DES was approved in 1978, and it is still in use, although no longer endorsed.

Current DES publication: FIPS 46-3 (October 25, 1999)

Multiple DES Encryption

Triple DES

What about multiple DES encryptions? Does this foil exhaustive attacks due to longer key sizes?

Campbell and Wiener (1992) proved that DES is not closed, so multiple DES encryptions/decryptions could potentially provide additional security.

- size of the group generated by all the keys (i.e. the number of distinct encryptions obtained by applying repeated DES encryptions) has been shown to have size at least $10^{2499} \approx 2^{8302}$. (Estimated number of atoms in the universe: 2^{240}.)

Later, we will show that on double encryption is essentially no more secure than single encryption (but twice as slow).

What about three DES encryption? 3DES (triple DES) is still used.

After DES became obsolete, the United States National Security Agency (NSA) wanted to take control of the cipher standard selection process

- Proposed the Skipjack Algorithm implemented on the Clipper Chip
- Standardized by NIST as Escrowed Encryption Standard (EES) in Feb. 1994 (see FIPS 185).

In blunt violation of Kerckhoff's principle, the details of Clipper and Skipjack were initially classified and kept secret.

Due to wide distrust of the NSA in the US and abroad, this never really caught on in the public sector.

Use three successive DES operations: $\quad C=D E S_{K_{1}}\left(D E S_{K_{2}}^{-1}\left(D E S_{K_{3}}(M)\right)\right)$

- See NIST Special Publication SP 800-67.

Advantages:

- Same as single key if $K_{2}=K_{1}$ or $K_{2}=K_{3}$.
- Exhaustive search has complexity 2^{112} via the meet-in-the-middle attack (see next week), but with a 168 -bit key and a factor of 3 in speed.
- Can use $K_{1}=K_{3}$ with no loss of security.
- No other known practical attacks.

The main disadvantage is that 3-DES is three times slower than single key DES while only doubling the key size.
Block Ciphers The Advanced Encryption Standard (AES)

AES Competition

In 1997, NIST put out a call soliciting candidates to replace DES using a process that was completely transparent and public. Requirements:

- possible key sizes of 128,192 , and 256 bits
- plaintexts and ciphertexts of 128 bits
- should work on a wide variety of hardware (from Smart Cards to PCs)
- fast
- secure
- world-wide royalty-free availability (!)

Finalists

Candidates were selected according to:

- security - resistance against all known attacks
- cost - speed and code compactness on a wide variety of platforms
- simplicity of design

Most important: public evaluation process

- series of three conferences: algorithms, attacks, evaluations presented and discussed
- final selection done by NIST

The Winner: Rijndael

All five were very good algorithms. Rijndael (pronounced "Reign Dahl" or "Rhine Dahl", but NOT "Region Deal") was chosen as the AES.

- Inventors: Vincent Rijmen and Joan Daemen.

The Rijndael algorithm uses two different types of arithmetic:

- Arithmetic on bytes (8 bit vectors-actually, elements of the finite field $G F\left(2^{8}\right)$ of 256 elements)
- 4-byte vectors (actually polynomial operations over $G F\left(2^{8}\right)$).

NIST initiated a public (world-wide) process of candidate submission and evaluation for the Advanced Encryption Standard.

21 algorithms were submitted on June 15, 1998, of which 15 were announced as candidates on August 20, 1998.

Five finalists were selected in August 1999:

- MARS (from IBM)
- RC6 (from RSA Labs)
- Rijndael (by two Belgians: Daemen and Rijmen)
- Serpent (Anderson, Biham, Knudson, a multi-national team)
- Twofish (Schneier et al)

Arithmetic on Bytes

Consider a byte $b=\left(b_{7}, b_{6}, \ldots, b_{1}, b_{0}\right)$ (an 8 -bit vector) as a polynomial with coefficients in $\{0,1\}$:

$$
b \mapsto b(x)=b_{7} x^{7}+b_{6} x^{6}+\cdots+b_{1} x+b_{0} .
$$

Byte operations (interpretted as polynomials):
(1) Addition (component-wise addition, i.e., XOR)
(2) Multiplication modulo $m(x)=x^{8}+x^{4}+x^{3}+x+1$
(3) Inversion modulo $m(x)$

Under these operations, polynomials of degree ≤ 7 with coefficients in $\{0,1\}$ form the field $G F\left(2^{8}\right)$.

By associating bytes with these polynomials, we obtain these operations on bytes (for ByteSub).

Arithmetic on 4-byte Vectors

Literature

In Rijndael's MixColumn operation, 4-byte vectors are considered as degree 3 polynomials with coefficients in $G F\left(2^{8}\right)$. That is, the 4 -byte vector $\left(a_{3}, a_{2}, a_{1}, a_{0}\right)$ is associated with the polynomial

$$
a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}
$$

where each coefficient is a byte viewed as an element of $G F\left(2^{8}\right)$

Operations:

- addition: component-wise "addition" of coefficients (addition as described above)
- multiplication: polynomial multiplication (addition and multiplication of coefficients as described above) modulo $M(x)=x^{4}+1$. Result is a degree 3 polynomial with coefficients in $G F\left(2^{8}\right)$.

Block Ciphers The Advanced Encryption Standard (AES)

Rijndael Properties

Properties, cont

The algorithm uses addition, multiplication, and inversion on bytes as well as addition and multiplication of 4 byte vectors.

Rijndael is a product cipher, but NOT a Feistel cipher like DES. Instead, it has three layers per round:

- a linear mixing layer (ShiftRows, transposition, and MixColumns, a linear transformation; for diffusion over multiple rounds)
- a non-linear layer (SubBytes, substitution, done with an S-box)
- a key addition layer (AddRoundKey, X-OR with key)

The Rijndael algorithm (given plaintext M) proceeds as follows:
(1) Initialize State with M :

$s_{0,0}$	$s_{0,1}$	$s_{0,2}$	$s_{0,3}$					
$s_{1,0}$	$s_{1,1}$	$s_{1,2}$	$s_{1,3}$					
$s_{2,0}$	$s_{2,1}$	$s_{2,2}$	$s_{2,3}$					
$s_{3,0}$	$s_{3,1}$	$s_{3,2}$	$s_{3,3}$	\leftarrow	m_{0}	m_{4}	m_{8}	m_{12}
:---:	:---:	:---:	:---:					
m_{1}	m_{5}	m_{9}	m_{13}					
m_{2}	m_{6}	m_{10}	m_{14}					
m_{3}	m_{7}	m_{11}	m_{15}					

where M consists of the 16 bytes $m_{0}, m_{1}, \ldots, m_{15}$.

Block Ciphers The Advanced Encryption Standard (AES)
The SubBytes Operation

Each byte of State is substituted independently, using an invertible S-box (see p. 16 of FIPS 197 for the exact S-Box).

Algebraically, SubBytes performs on each byte:

- an inversion as described above (the inverse of the zero byte is defined to be zero here), followed by
- an affine transformation, i.e. a linear transformation (like in linear algebra), and the addition of a fixed vector. More exactly, the $i=$ th bit of the output byte is

$$
b_{i}^{\prime}=b_{i} \oplus b_{i+4 \bmod 8} \oplus b_{i+5} \bmod 8 \oplus b_{i+6} \bmod 8 \oplus b_{i+7} \bmod 8 \oplus c_{i}
$$

where b_{i} is the i-th input bit and c_{i} is the i-th bit of $c=(11000110)$.
(2) Perform AddRoundKey, which X-OR's the first RoundKey with State.
(3) For each of the first $N_{r}-1$ rounds:

- Perform SubBytes on State (using an S-box on each byte of State),
- Perform ShiftRows (a permutation) on State,
- Perform MixColumns (a linear transformation) on State,
- Perform AddRoundKey.
(0) For the last round:
- Perform SubBytes,
- Perform ShiftRows,
- Perform AddRoundKey.
(0) Define the ciphertext C to be State (using the same byte ordering).

The inverse of SubBytes (called InvSubBytes) applies the inverse S-box to each byte State (see p. 22 of FIPS 197 for the inverse of the S-Box).

Algebraically, you first apply the inverse affine transformation to each bit and then byte inversion.

Shifts the first, second, third, and last rows of State by $0,1,2$, or 3 cells to the left, respectively:

$s_{0,0}$	$s_{0,1}$	$s_{0,2}$	$s_{0,3}$					
$s_{1,0}$	$s_{1,1}$	$s_{1,2}$	$s_{1,3}$					
$s_{2,0}$	$s_{2,1}$	$s_{2,2}$	$s_{2,3}$					
$s_{3,0}$	$s_{3,1}$	$s_{3,2}$	$s_{3,3}$	\leftarrow	$s_{0,0}$	$s_{0,1}$	$s_{0,2}$	$s_{0,3}$
:---	:---	:---	:---					
$s_{1,1}$	$s_{1,2}$	$s_{1,3}$	$s_{1,0}$					
$s_{2,2}$	$s_{2,3}$	$s_{2,0}$	$s_{2,1}$					
$s_{3,3}$	$s_{3,0}$	$s_{3,1}$	$s_{3,2}$					

The inverse operation InvShiftRows applies right shifts instead of left shifts.

Each column of State is a 4-byte vector which can be interpreted as a four-term polynomial with coefficients in $G F\left(2^{8}\right)$ as described above. For example:

$$
\left(s_{0,0}, s_{1,0}, s_{2,0}, s_{3,0}\right) \mapsto s_{3,0} x^{3}+s_{2,0} x^{2}+s_{1,0} x+s_{0,0}=\operatorname{col}_{0}(x) .
$$

Let $a(x)=3 x^{3}+x^{2}+x+2$ be fixed.
Then MixColumns multiplies $\operatorname{col}_{i}(x)$ by $a(x)$ as described above (multiplication of two 4 -byte vectors), resulting in a new 4 -byte column.

Block Ciphers The Advanced Encryption Standard (AES)
 MixColumns: Algebraic Description

MixColumns can also be described as a linear transformation applied to each column of State, i.e. multiplying each 4 -element column vector by the 4×4 matrix.

$$
\left(\begin{array}{llll}
2 & 3 & 1 & 1 \\
1 & 2 & 3 & 1 \\
1 & 1 & 2 & 3 \\
3 & 1 & 1 & 1
\end{array}\right)
$$

Note that rows $0,1,2,3$ of this matrix are circular shifts of row 0 by 0,1 , 2,3 cells to the right.

Block Ciphers The Advanced Encryption Standard (AES)

InvMixColumns: Algebraic Description

The inverse (called InvMixColumns) multiplies each column of State by the inverse of $a(x)\left(\bmod x^{4}+1\right)$ which is

$$
a^{-1}(x)=B x^{3}+D x^{2}+9 x+E
$$

in hex notation.
It can also be described as multiplication by the following matrix (in hex):

$$
\left(\begin{array}{llll}
E & B & D & 9 \\
9 & E & B & D \\
D & 9 & E & B \\
B & D & 9 & E
\end{array}\right)
$$

Key Schedule

In AddRoundKey, each column of State is X-ORed with one word of the round key:

$s_{0,0}$	$s_{0,1}$	$s_{0,2}$	$s_{0,3}$	$s_{0,0}$	$s_{0,1}$	$s_{0,2}$	${ }^{5}, 3$		$w_{0, i+0}$	$w_{0, i+1}$	$w_{0, i+2}$	$w_{0, i+3}$
$s_{1,0}$	$s_{1,1}$	${ }_{5}{ }_{1,2}$, 3	$s_{1,0}$	$s_{1,1}$	$s_{1,2}$	$s_{1,3}$		$w_{1, i+0}$	$w_{1, i+1}$	$w_{1, i+2}$	$w_{1, i+3}$
$s_{2,0}$	${ }_{5}{ }_{2,1}$	${ }^{\text {s,2 }}$	${ }_{5}{ }_{2}, 3$	$s_{2,0}$	$s_{2,1}$	${ }_{5}{ }_{2,2}$	${ }_{5}$ 2,3		$w_{2, i+0}$	$w_{2, i+1}$	$w_{2, i+2}$	$w_{2, i+3}$
$s_{3,0}$	$s_{3,1}$	$5_{3,2}$	$5_{3,3}$	$s_{3,0}$	$s_{3,1}$	$s_{3,2}$	$5_{3,3}$		$w_{3, i+0}$	$w_{3, i+1}$	$w_{3, i+2}$	$w_{3, i+3}$

Here $w_{i+0}=\left(w_{0, i+0}, w_{1, i+0}, w_{2, i+0}, w_{3, i+0}\right)$ is the first round key for round i, made up of four bytes.

AddRoundKey is clearly its own inverse.

The key schedule uses:

- the S-box from SubBytes
- cyclic left shifts by one byte on 4-byte vectors
- multiplication by powers of x (each such power is interpreted as a 4-byte vector)

Consider 128-bit Rijndael. There are 10 rounds plus one preliminary application of AddRoundKey, so the key schedule must produce 11 round keys, each consisting of four 4 -byte words, from the 128 -bit key (16 bytes).

KeyExpansion

Produces an expanded key consisting of the required 44 words (assuming 128 -bit key).

In the following, the key $K=\left(k_{0}, k_{1}, k_{2}, k_{3}\right)$, where the k_{i} are 4 -byte words, and the expanded key is denoted by the word-vector ($w_{0}, w_{1}, w_{2}, \ldots, w_{44}$).
(1) for $i \in\{0,1,2,3\}, w_{i}=k_{i}$
(2) for $i \in\{4, \ldots, 44\}$:

$$
w_{i}=w_{i-4} \oplus \begin{cases}\operatorname{SUBWORD}\left(\operatorname{ROTWORD}\left(w_{i-1}\right)\right) \oplus \operatorname{RCON}_{i / 4} & \text { if } 4 \mid i \\ w_{i-1} & \text { otherwise }\end{cases}
$$

Block Ciphers The Advanced Encryption Standard (AES)

KeyExpansion, cont.

The components of KeyExpansion are

- RotWord is a one-byte circular left shift on a word.
- SubWord performs a byte substitution (using the S-box SubBytes on each byte of its input word).
- Rcon is a table of round constants (RCON_{j} is used in round j). Each is a word with the three rightmost bytes equal to 0 and the leftmost byte a power of x

KeyExpansion is similar for 192 and 256 -bit keys.

Decryption

Strengths of Rijndael

To decrypt, perform cipher in reverse order, using inverses of components and the reverse of the key schedule:
(1) AddRoundKey with round key N_{r}
(2) For rounds $N_{r}-1$ to 1 :

- InvShiftRows
- InvSubBytes
- AddRoundKey
- InvMixColumns
(3) For round 1:
- InvShiftRows
- InvSubBytes
- AddRoundKey using round key 1

Note 2

Straightforward inverse cipher has a different sequence of transformations in the rounds. It is possible to reorgainize this so that the sequence is the same as that of encryption (see A2 of FIPS-197).

Strengths, cont.

Secure key schedule (great confusion):

- knowledge of part of the cipher key or round key does not enable calculation of many other round key bits
- each key bit affects many round key bits

Very low memory requirements
Very fast (hardware and software)

Secure against all known attacks at the time; some newer attacks seem to pose no real threat

Non-linearity resides in S-boxes (SubByTES):

- linear approximation and difference tables are close to uniform (thwarting linear and differential cryptanalysis)
- no fixed points $(S(a)=a)$ or opposite fixed points $(S(a)=\bar{a})$
- not an involution $\left(S(S(a)) \neq a\right.$, or equivalently, $\left.S(a)=S^{-1}(a)\right)$

ShiftRows and MixColumns ensure that after a few rounds, all output bits depend on all input bits (great diffusion).

Weaknesses of Rijndael

Decryption is slower than encryption.
Decryption algorithm is different from encryption (requires separate circuits and/or tables).

- Depending on the mode of operation, however, this may not be an issue (i.e. OFB, CTR, CFB).

Security of AES

There is no mathematical proof that AES is secure
All we know is that in practice, it withstands all modern attacks.
Next: overview of modern attacks on block ciphers

Exhaustive search for DES can be cut in half (i.e. to 2^{55} test encryptions) via the property

$$
C=E_{K}(M) \quad \Longrightarrow \quad E_{\bar{K}}(\bar{M})=\bar{C},
$$

where \bar{X} denotes the one's complement of a bit string X (i.e. each bit in X is flipped to obtain \bar{X}).

Mount a CPA as follows: choose two pairs ($M, C_{1}=E_{K}(M)$) and $\left(\bar{M}, C_{2}=E_{K}(\bar{M})\right.$. For each test key K^{\prime}, if

- $E_{K^{\prime}}(M)=C_{1}$, then $K=K^{\prime}$,
- $E_{K^{\prime}}(M)=\bar{C}_{2}$, then $K=\overline{K^{\prime}}$, since $E_{K^{\prime}}(M)=\bar{C}_{2} \Rightarrow E_{\overline{K^{\prime}}}(\bar{M})=C_{2}$.

Set $N=|\mathcal{K}|$ (number of keys).
Simple exhaustive search (COA) - requires $|\mathcal{K}|$ encryptions

- feasible for DES $-N=2^{56} \approx 10^{17}$ possible keys.
- infeasible for 3DES $-N=2^{112} \approx 10^{34}$ possible key combinations.
- infeasible for AES $-N=2^{128} \approx 10^{38}$ possible keys

Parallelism can speed up exhaustive search.
Perspective: there are approximately 10^{40} water molecules in Lake
Ontario. 10^{38} is significantly bigger than the number of water molecules in Lake Louise or in the stretch of the Bow River through Calgary!

Attacks on Block Ciphers Exhaustive Attacks
 Hellman's Time-memory tradeoff (1980)

KPA that shortens search time by using a lot of memory.

- The attacker knows a plaintext/ciphertext pair $\left(M_{0}, C_{0}\right)$.
- The goal is to find the (or a) key K such that $C_{0}=E_{K}\left(M_{0}\right)$.

Let $N=|\mathcal{K}|$. Cost (\# of encryptions) is
Precomputation time: N
Expected time: $\quad N^{2 / 3}$
Expected memory: $\quad N^{2 / 3}$

Large precomputation time, but improvement for individual keys - For DES, $N^{2 / 3} \approx 10^{12}$ - can be done in hours or even minutes on a modern computer.

KPA on double encryption.

Setup:

- Adversary has two known plaintext/ciphertexts pairs (m_{1}, c_{1}) and (m_{2}, c_{2})
- Double-encryption, so $c_{i}=E_{k_{1}}\left(E_{k_{2}}\left(m_{i}\right)\right)$ for $i=1,2$ and two unknown keys k_{1}, k_{2}.

Important observation: $D_{k_{1}}\left(c_{i}\right)=E_{k_{2}}\left(m_{i}\right)(i=1,2)$.

Attacks on Block Ciphers Meet-in-the-Middle Attack on Double Encryption
Analysis

There are at most N values $E_{K_{i}}\left(m_{1}\right)$ and at most N values $D_{K_{j}}\left(c_{1}\right)$ for $1 \leq i, j \leq N$.

- Assuming random distribution, the chances of a match are $1 / N$.
- Thus, $(N \cdot N) / N=N$ key pairs $\left(K_{i}, K_{j}\right)$ satsify $E_{K_{i}}\left(m_{1}\right)=D_{K_{j}}\left(c_{1}\right)$.

The chances that such a key pair also satisfies $E_{K_{i}}\left(m_{2}\right)=D_{K_{j}}\left(c_{2}\right)$ are very small (paranoid users could try a third message/ciphertext pair (m_{3}, c_{3})).

Thus, the probability of guessing correctly is very high.

The adversary proceeds as follows:
(1) Single-encrypt m_{1} under every key K_{i} to compute $C_{i}=E_{K_{i}}\left(m_{1}\right)$ for $1 \leq i \leq N$.
(2) Sort the table (or create a hash table).
(3) For $j=1$ to N do

- Single-decrypt c_{1} under every key K_{j} to compute $M_{j}=D_{K_{i}}\left(c_{1}\right)$.
(2) Search for M_{j} in the table of C_{i}. If $M_{j}=C_{i}$ for some i, then check if $E_{K_{i}}\left(m_{2}\right)=D_{K_{j}}\left(c_{2}\right)$. If this holds, then guess $k_{2}=K_{i}$ and $k_{1}=K_{j}$ and quit.

Analysis, cont

Time required:

- Step 1: N encryptions
- Step 2: sorting/hash table creation is negligible compared to Step 1
- Step 3 (a): at most N decryptions
- Step 3 (b): negligible in light of Step 2

Total: $2 N$ encryptions/decryptions.
Memory: N keys and corresponding ciphertexts (the table of (C_{i}, K_{i}) pairs)
Conclusion: double encryption offers little extra protection over single encryption (hence 3DES instead of 2DES).

Linear Cryptanalysis

Example (DES)

M. Matsui, EUROCRYPT 1993 - CCA

- Matsui actually used this method to become the first person to recover a DES key (50 days using 12 workstations).

Definition 9

A cryptosystem is affine (linear) if for all plaintexts M and keys K,

$$
C=E_{K}(M)=A M+B K+H
$$

where A and B are matrices and H is a vector of appropriate dimension (A, B and H are public). The system is linear if $H=0$.

Note that B may or may not be square.

Idea of Linear Cryptanalysis

If a cryptosystem is "close to" being affine then the modified system can be broken and original system compromised after some searching.

- "close to affine" if modifying a few entries in the system (eg. in the S-boxes) makes it affine on certain plaintext/ciphertext pairs

Linear cryptanalysis attempts to "linearly approximate" non-linear cryptosystems in this way.

Every building block in DES and AES except the S-boxes is affine.

- S-boxes must not be "close" to linear (i.e. closely approximated by a linear function).

Requirements for full DES

Biham and Shamir, Journal of Cryptology, 1991 - KPA
Compares input XORs to output XORs, and traces these differences through the cipher.

Both linear and differential cryptanalysis work quite well on DES with fewer than 16 rounds.

- The first edition of Stinson's book (1995) discusses successful differential cryptanalysis attacks on 3 -round and 6 -round DES.
- Large-scale, parallel, brute-force attack is still the most practical attack on 16 round DES.

Courtois 2001 - KPA, generates multivariate equations from S-boxes, where the unknowns are the key bits.

- So far no threat to any modern block cipher.

Obstactle: solving multivariate equations seems to be hard in practice

Attacks on Block Ciphers Analytic Attacks

Type of attack	Expected time	$\#$ of (M, C) pairs
Exhaustive search	2^{55}	none
Linear Cryptanalysis	2^{43}	$2^{43}($ chosen $)$
Differential Cryptanalysis	2^{47}	$2^{47}($ known $)$

Note: AES not affected by these attacks (by design)

Biclique Attack

Enhanced meet-in-the-middle attack using bicliques that map internal states to ciphertexts via subkeys.

First improved key recovery on AES (Bogdanov, Khovratovich, Rechberger 2011):

AES key length	Exhaustive search	Biclique (expected)
128	2^{128}	$2^{126.1}$
192	2^{192}	$2^{189.7}$
256	2^{256}	$2^{254.4}$

These and other attacks (e.g. square attack) are successful on 8 and lower round AES.

Stream Ciphers

In contrast to block ciphers, stream ciphers don't treat incoming characters independently.

- Encryption C_{i} of plaintext character M_{i} depends on internal state of device.
- After encryption, the device changes state according to some rule.

Result: two occurrences of the same plaintext character will usually not result in the same ciphertext character.
Diagram of an SSC
Block Ciphers as SSCs

Idea:

- State depends only on the previous state, not on the input M_{i}.
- C_{i} depends only on M_{i} and i, not on M_{i-1}, M_{i-2}, \ldots
- Implemented by boolean logic that should produce a pseudo-random sequence R_{i} synchronized by the key (e.g. a shift register).

Example 10

The one-time pad can be interpreted as an SSC.

Idea:

- Send an initial key value $K S_{0}=I V$ to the receiver in the clear.
- Compute $K S_{i}=E_{K}\left(K S_{i-1}\right)$ and $C_{i}=M_{i} \oplus K S_{i}$.

Problems:

(1) No error propagation
(2) Loss of one character between sender and receiver destroys synchronization (no memory)

Idea:

- Similar to SSC, except the counter is replaced by a register containing the previous k ciphertexts.
- Self-synchronizing after k steps.
- Can also be implemented with a block cipher as above.
- Limited error propagation (k steps).
Stream Ciphers
ECB Modes of Operation for Block Ciphers

Definition 11 (Electronic code book (ECB) mode)

Blocks are encrypted sequentially, one at a time: $C_{i}=E_{K}\left(M_{i}\right)$,
$i=1,2, \ldots$

A block cipher used in ECB mode is essentially a substitution cipher (with all its weaknesses).

To eliminate the shortcomings of ECB mode, additional modes of operation have been devised:

- Cipher Block Chaining (CBC)
- Output Feedback (OFB)
- Cipher Feedback (CFB)
- Counter (CTR)

DES Certified Modes: ECB, CBC, and CFB; standardized as part of DES standardization process.

- CTR mode arose from concerns with CBC; standardized for AES.

Properties of CTR Mode

A counter $\left(C T R_{i}\right)$ of the same size as the cipher block size is maintained.

- Subsequent values of the counter are computed via an iterating function - the FIPS recommendation is simply $C T R_{i+1}=C T R_{i}+1 \bmod 2^{n}$ assuming an n-bit counter.

Encryption: $C_{i}=E_{K}\left(C T R_{i}\right) \oplus M_{i}$
Decryption: $M_{i}=E_{K}\left(C T R_{i}\right) \oplus C_{i}$

Counter must be unique for each plaintext block that is ever encrypted under a given key, across all messages.

- can count \# of plaintext blocks encrypted under a given counter sequence - new key before exceeding 2^{n} blocks (n-bit blocks)

Advantages:

- only the encryption function of the block cipher is used (important for AES, in which decryption is slightly less efficient than encryption),
- the ith ciphertext block does not depend on previous ciphertext or plaintext blocks
- allows for random-access encryption/decryption, parallelism.

Further Information

The feedback modes turn a block cipher into a stream cipher
CFB (cipher feedback) mode is a self-SSC.

- Usually r cipher bits are fed back (for DES, $r=8$ and IV is at least 48 random bits, right-justified, padded with 0's).
- Each cryptographic session requires a different IV, but these may be sent in the clear.

OFB (output feedback) is a SSC, used similarly to CFB.

For more modes of operations as well as recommendations for other block ciphers, see the NIST Crypto Toolkit Modes of Operation page http://csrc.nist.gov/CryptoToolkit/modes/.

