CPSC/PMAT 669

One Way Functions and Cryptographic Key Agreement

Mike Jacobson
Department of Computer Science
University of Calgary
Topic 4

Recall the key agreement problem:

- Before deploying a conventional cryptosystem, how do Alice and Bob agree on a common secret cryptographic key?

Solutions:

- Secure channel (slow and expensive)
- Key agreement protocol via a certain one-way function: next.

Outline

MotivationOne-Way FunctionsNumber Theory- Euler's ϕ Function
- Primitive Roots
- Discrete LogarithmsDiffie-Hellman Key Agreement
- Security of DH Protocol
- The Power Algorithm (Binary Exponentiation)

Definition 1 (One-way function)

A function f that satisfies the following two properties:
(1) Ease of Computation: $f(x)$ is easy to evaluate for a given x.
(2) Pre-image Resistance: Given $y=f(x)$, it is computationally infeasible to find x.

It is not known whether one way functions exist, but several that are believed to be one-way are used in cryptography.

Examples

Application: Access Control

Example 2

A pre-image resistant hash function is a one-way function.

Example 3

A secure cryptosystem (computationally infeasible to find the key) provides a one-way function. Define $C=f(x)=E_{x}(M)$, where M is a known piece of plaintext and x is some key. Given M and C (KTA), it should infeasible to find the key x.

We could also use $f(x)=E_{x}(x)$.

Several candidate one-way functions come from number theory.
Define for $m \in \mathbb{N}$:

- $\mathbb{Z}_{m}=\{0,1, \ldots, m-1\}$ set of integers modulo m
- $\mathbb{Z}_{m}^{*}=\left\{a \in \mathbb{Z}_{m} \mid \operatorname{gcd}(a, m)=1\right\}$ set of integers between 1 and m that are coprime to m.

Example 4

$\mathbb{Z}_{42}=\{0,1, \ldots, 41\}$ and $\mathbb{Z}_{42}^{*}=\{1,5,11,13,17,19,23,25,29,31,37,41\}$.

Secure login via one-way functions: Computer stores a table

$$
\left(\text { user-id }_{i}, f\left(P_{i}\right)\right),
$$

containing user id's and images of passwords under a one-way function f - safer than storing passwords in the clear.

When a user logs in, he submits his user id user-id and his password P.
The computer generates $f(P)$ and checks if (user-id, $f(P)$) is an entry in the password table.

- If yes, access is granted, if no, access is denied.

Definition 5 (Euler's ϕ Function)

Let m be a positive integer. Euler's phi function is defined via $\phi(m)=\left|\mathbb{Z}_{m}^{*}\right|$.

Interpretation: $\phi(m)$ is the number of integers between 1 and $m-1$ which are coprime (no common divisors) to m.

$$
\begin{aligned}
& \text { Example } 6 \\
& \phi(42)=\left|\mathbb{Z}_{42}^{*}\right|=\{1,5,11,13,17,19,23,25,29,31,37,41\} \mid=12
\end{aligned}
$$

Let p be a prime. Then

$$
\begin{gathered}
\phi(p)=p-1=p^{0}(p-1) \\
\phi\left(p^{2}\right)=p^{2}-p=p^{1}(p-1) \\
\phi\left(p^{n}\right)=p^{n}-p^{n-1}=p^{n-1}(p-1) .
\end{gathered}
$$

Theorem 1

If $\operatorname{gcd}\left(m_{1}, m_{2}\right)=1$, then $\phi\left(m_{1} m_{2}\right)=\phi\left(m_{1}\right) \phi\left(m_{2}\right)$.

Proof.

Omitted (uses Chinese Remainder Theorem).

What about composites with more than one prime factor?

Corollary 2

If the prime factorization of m is given by

$$
m=\prod_{i=1}^{k} p_{i}^{\alpha_{i}}, \quad p_{i} \text { prime }
$$

then

$$
\phi(m)=\prod_{i=1}^{k} \phi\left(p_{i}^{\alpha_{i}}\right)=\prod_{i=1}^{k} p_{i}^{\alpha_{i}-1}\left(p_{i}-1\right) .
$$

Theorem 3 (Euler)

If $\operatorname{gcd}(a, m)=1$, then $a^{\phi(m)} \equiv 1(\bmod m)$.

Special case $m=p$ prime:
Theorem 4 (Fermat)
If p is prime, and $p \nmid a$, then $a^{p-1} \equiv 1(\bmod p)$.

[^0]```
Why "probabilistic"?
```

Fermat's Theorem gives rise to a fast probabilistic primality test using binary exponentiation:

- If $a^{N-1} \equiv 1(\bmod N)$ for a few small primes $a \nmid N$, then $N$ is probably prime (base a pseudoprime).
- If $a^{N-1} \not \equiv 1(\bmod N)$ for any prime $a \nmid N$, then $N$ is composite.

```
Example 8
N=15:11 N-1 \equiv114 \equiv1(mod 15), but 13'14 \equiv4(mod 15).
```


## Primitive Roots

Recall that for any prime $p$ :

- $\mathbb{Z}_{p}=\{0,1,2, \ldots, p-1\}$ is the set of integers modulo $p$;
- $\mathbb{Z}_{p}^{*}=\mathbb{Z}_{p} \backslash\{0\}=\{1,2, \ldots, p-1\}$.

Fermat's theorem asserts that $a^{p-1} \equiv 1(\bmod p)$ for any $a \in \mathbb{Z}_{p}^{*}$. What about smaller powers of $a$ ?

## Definition 9 (Primitive Root)

For a prime $p$, a primitive root of $p$ (generator of $\mathbb{Z}_{p}^{*}$ ) is an element $g \in \mathbb{Z}_{p}^{*}$ such that the smallest positive integer $k$ with $g^{k} \equiv 1(\bmod p)$ is $p-1$.

Unfortunately, there are composite numbers (called Charmichael numbers) for which $a^{N-1} \equiv 1(\bmod N)$ for all integers $a$.

- Thus, this method cannot prove primality.

The smallest Carmichael number is 561 . The next few are 1105, 1729, 2465, 2821, 6601, 8911.

- Even worse: it has been proved that there are infinitely many Carmichael numbers.
- The good news is that they are very rare, so this test will work well for most integers.


## Example

Generators yield the longest possible cycle of powers modulo $p$.

## Example 10

Is $a=3$ a primitive root of $p=7$ ? By tabulating the powers of $a \bmod p$ we get

$$
3^{0}=1, \quad 3^{1}=3, \quad 3^{2}=2, \quad 3^{3}=6, \quad 3^{4}=4, \quad 3^{5}=5, \quad 3^{6}=1 .
$$

(Sequence repeats at exponent 6 by Fermat's theorem.)

- Since 6 is the smallest power of 3 yielding 1,3 is a primitive root of 7 .
- 5 is also a primitive root of 7 .

There are no others (e.g. $2^{3}=1$, so 2 is not a primitive root of 7 ).

## Properties of Primitive Roots

If $g$ is a primitive root and $\operatorname{gcd}(a, p)=1$, then $g^{i} \equiv a(\bmod p)$ for some $i$ with $0 \leq i<p-1$. In other words, every non-zero integer is a power of a primitive root of $p$. So

$$
\mathbb{Z}_{p}^{*}=\left\{g^{0}, g^{1}, \ldots, g^{p-2}\right\}
$$

## Theorem 5

For any prime $p$, there are exactly $\phi(p-1)$ primitive roots of $p$.

## Example 11

For $p=7$, there are $\phi(p-1)=\phi(6)=(3-1)(2-1)=2$ primitive roots.

It can be shown that for sufficiently large $n$,

$$
\phi(n) \geq C \frac{n}{\log \log (n)},
$$

where $C \approx 1.7$. For large $n, \phi(n)$ is not much smaller than $n$. So that's a lot of primitive roots!

Most primes $p$ have at least one small primitive root, i.e. most of the time, one of 2 or 3 or 5 or 7 is a primitive root of $p$.

Suppose $p$ is prime.

- Select some $g \in \mathbb{Z}_{p}^{*}$ and compute $g^{(p-1) / q}(\bmod p)$ for each prime divisor $q$ of $p-1$ (so this requires knowledge of the prime factorization of $p-1$ ).
- If $g^{(p-1) / q} \not \equiv 1(\bmod p)$ for each $q$, then $g$ is a primitive root of $p$.

Best choice of $g$ : a small prime (try $2,3,5,7, \ldots$ ).

## Discrete Logarithms

Let $p$ be a prime and $g$ a primitive root of $p$. Then for every $y \in \mathbb{Z}_{p}^{*}$, there exists a unique integer $x$ with $0 \leq x \leq p-2$ such that

$$
y \equiv g^{x} \quad(\bmod p) .
$$

## Definition 13 (Discrete Logarithm)

The integer $x$ is the discrete logarithm (or index) of $y$ (to base $g$ ).

## Example 14

If $p$ is large $\left(\approx 2^{1024}\right)$, then the function

$$
f(x) \equiv g^{x} \quad(\bmod p), \quad 0<x<p-1,1<f(x)<p
$$

seems to be a one-way function, provided $p-1$ has at least one large prime factor. Computing $x$ given $f(x)$ and $g$ is known as the discrete logarithm problem (DLP).

Number Theory Discrete Logarithms

## DLP Record

## Note 1

The fastest known algorithm for extracting discrete logs is the Number Field Sieve which is a very complicated algorithm using extremely sophisticated number theory.

- The current NFS DL record is for the prime $p=\left\lfloor 10^{159} \pi\right\rfloor+119849$ (160 decimal digits), Kleinjung, February 2007.



## Diffie-Hellman Key Agreement Protocol

Diffie and Hellman (1976) — still used today.
$A$ and $B$ agree on

- a large prime $p$,
- a primitive root $g$ of $p$

These quantities can be public.

Diffie-Hellman Key Agreement Security of DH Protocol
Security of Diffie-Hellman

Adversary's objective: find $K$
Diffie-Hellman Problem (DHP): given $p, g, g^{a}, g^{b}$, find $g^{a b}$ (modulo $p$ ).

- equivalent to finding $K$.

Also recall: Discrete Logarithm Problem (DLP): given $p, g, g^{a}$, find a.

- If an adversary can solve an instance of the DLP, he can solve the DHP (i.e., DHP $\leq_{p}$ DLP).
- Other direction unknown, i.e., if there are ways of solving the DHP, i.e., attacking DH key agreement, other than extracting discrete logs.

| Public <br> A <br> Channel |  |  |
| :--- | :---: | :--- |
| Select $a, 1<a<p$ randomly |  | B |
| $y_{a} \equiv g^{a}(\bmod p)$ | $y_{a} \longrightarrow$ | $y_{a}$ |
| $y_{b}$ | $\longleftarrow y_{b}$ | $y_{b} \equiv g^{b}(\bmod p)$ |
| $K=y_{b}^{a}$ |  | $K=y_{a}^{b}$ |

## Note 2

- A and $B$ get the same number $K$ because
$y_{b}^{a} \equiv\left(g^{b}\right)^{a} \equiv g^{b a} \equiv\left(g^{a}\right)^{b} \equiv y_{a}^{b}(\bmod p)$
- Can use the low order 128 bits of $H(K)$ for an AES key, where $H$ is a cryptographically secure hash function.


## Parameter Choice

In order to make DLP attacks as difficult as possible, a popular choice for $p$ is a Sophie Germain prime (aka strong or safe prime), i.e. a prime of the form $p=2 q+1$ with $q$ prime.

Why? Because $p-1=2 q$, and thus as as large a prime divisor as possible

## Consider the following (active) attack:

- Eve intercepts $g^{a}$ from Alice and $g^{b}$ from Bob.
- She selects $e, 1<e<p$ and sends $g^{e}$ to both Alice and Bob.
- Alice now thinks that $g^{e}$ is $g^{b}$, and Bob thinks $g^{e}$ is $g^{a}$.
- Alice computes what she thinks is $\left(g^{b}\right)^{a}$, but in fact computes $g^{e a}$.
- Bob computes what he thinks is $\left(g^{a}\right)^{b}$, but in fact computes $g^{e b}$.
- Eve computes $\left(g^{a}\right)^{e}$ (which is what Alice thinks is the key) and $\left(g^{b}\right)^{e}$ (which is what Bob thinks is the key).


## Efficiency of Diffie-Hellman

Solution: keys need to be entity-authenticated (i.e. verified as belonging to the correct person).

- This is done using digital signatures, which we'll discuss later on.

Man-in-the-middle attack: example of can happen when adversarial models are too weak

- Basic (un-authenticated, or anonymous) DH is provably secure against passive adversaries (can only eavedrop)
- Easily defeated by active adversary

Be aware of cryptography textbooks that only focus on the mathematics and ignore these issues!
Diffie-Hellman Key Agreement Security of DH Protocol
ISSUES
Solution: keys need to be entity-authenticated (i.e. verified as belonging
to the correct person). Ig

If Alice sends a message encrypted with $g^{e a}$ to Bob:

- Eve intercepts it, decrypts it with $g^{e a}$, re-encrypts it with $g^{e b}$ and sends it on to Bob.
- Bob decrypts it unsuspectingly and in his perspective correctly using $g^{e b}$.

Similarly, Eve can read all traffic from Bob to Alice.

Given $b_{0}, \ldots, b_{k}$, we can evaluate $n$ efficiently using Horner's Method:

$$
n=2\left(\ldots\left(2\left(2 b_{0}+b_{1}\right)+b_{2}\right) \cdots+b_{k-1}\right)+b_{k} .
$$

Define $s_{0}=b_{0}, s_{i+1}=2 s_{i}+b_{i+1}$ for $0 \leq i \leq k-1$. Then

$$
\begin{aligned}
& s_{0}=b_{0} \\
& s_{1}=2 b_{0}+b_{1} \\
& s_{2}=2\left(2 b_{0}+b_{1}\right)+b_{2}=2^{2} b_{0}+2 b_{1}+b_{2} \\
& \vdots \\
& s_{k}=n .
\end{aligned}
$$

One can formally prove (using induction on $i$ ):

$$
s_{i}=\sum_{j=0}^{i} b_{j} 2^{i-j} \quad \text { for } 0 \leq i \leq k
$$

The actual algorithm:
(1) Initialize $r_{0}=a$.
(2) for $0 \leq i \leq k-1$ compute

$$
r_{i+1}= \begin{cases}r_{i}^{2} \bmod m & \text { if } b_{i+1}=0 \\ r_{i}^{2} a \bmod m & \text { if } b_{i+1}=1\end{cases}
$$

For $0 \leq i \leq k$, define

$$
r_{i} \equiv a^{s_{i}} \quad(\bmod m) .
$$

Then $r_{k} \equiv a^{s_{k}} \equiv a^{n}(\bmod m)$ and we can compute $r_{k}$ iteratively as follows:

$$
\begin{aligned}
r_{0} & \equiv a^{s_{0}} \equiv a \quad(\bmod m) \\
r_{1} & \equiv a^{s_{1}} \equiv a^{2 b_{0}+b_{1}} \equiv\left(a^{s_{0}}\right)^{2} a^{b_{1}} \equiv\left(r_{0}\right)^{2} a^{b_{1}} \quad(\bmod m) \\
\quad & \\
r_{i+1} & \equiv a^{s_{i+1}} \equiv a^{2 s_{i}+b_{i+1}} \equiv\left(a^{s_{i}}\right)^{2} a^{b_{i+1}} \equiv\left(r_{i}\right)^{2} a^{b_{i+1}} \quad(\bmod m) .
\end{aligned}
$$

What is the computational cost of this?

- $k$ modular squarings
- $h(n)$ modular multiplications by a, where $h(n)$ is the Hamming weight of $n$, i.e. the number of ' 1 's in the binary expansion of $n$.

Total cost: at most $2 \log _{2}(n)$ modular multiplications.
Also note that all intermediate operands are smaller than $m^{2}$

- Important that $r_{i}$ is reduced modulo $m$ after every operation

Looking Ahead

Solutions to the key establishment problem:
(1) Diffie-Hellman key agreement protocol
(2) Public key cryptography - next!

- also used for authentication - later!


[^0]:    Example 7
    $\phi(42)=\phi(2 \times 3 \times 7)=\phi(2) \phi(3) \phi(7)=1 \times 2 \times 6=12$.

