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Public-Key Cryptography

Public-Key Cryptography

Whitfield Diffe and Martin Hellman, “New Directions in Cryptography”,
1976.

Note that Diffie and Hellman did not describe a specific means of
implementing a public-key cryptosystem.

They merely described how one could be used to achieve security,
authentication, (and indirectly, integrity and non-repudiation).

Also secretly discovered in 1970 as “non-secret encryption” by Clifford
Cocks and James H. Ellis of CESG (Communications-Electronics Security
Group, part of the the UK Government’s Government Communications
Headquarters(GCHQ))

disclosed in 1987; see http://jya.com/ellisdoc.htm.
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Public-Key Cryptography

Idea of Public-Key Cryptography

Every user has two keys

encryption key is public (so everyone can encrypt messages)

decryption key is only known to the receiver

Deducing the decryption key from the encryption key should be
computationally infeasible.
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Public-Key Cryptography

Diagram of a Public-Key Cryptosystem
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Public-Key Cryptography

Trap-door One-Way Functions

Definition 1 (Trap-door one-way function)

A function f that satisfies the following properties:

1 Ease of Computation: f (x) is easy to compute for any x .
2 Computation Resistance with Trap-door: Given y = f (x) it is

computationally infeasible to determine x unless certain special
information used in the design of f is known.

When this trap-door k is known, there exists a function g which is easy
to compute such that x = g(k, y).

Key to designing public-key cryptosystems: decryption key acts as a trap
door for the encryption function.

Mike Jacobson (University of Calgary) CPSC/PMAT 669 Topic 5 6 / 31

Public-Key Cryptography

Public-Key Cryptosystem

Definition 2 (Public Key Cryptosystem (PKC))

A PKC consists of a plaintext space M, a ciphertext space C, a public key
space K, and encryption functions EK1 :M→ C, indexed by public keys
K1 ∈ K, with the following properties:

1 Every encryption function EK1 has a left inverse DK2 , where K2 is the
private key corresponding to the public key K1.

2 EK1(M) and DK2(C ) are easy to compute when K1 and K2 are known.

3 DK2(EK1(M)) = M for all M ∈M.

4 Given K1, EK1 , and C = EK1(M), it is computationally infeasible to
find M or K2.

Properties 2, 3, 4 describe EK1 as a trapdoor one-way function.
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Public-Key Cryptography

Schematic of a Public-Key Cryptosystem
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Note 1

In a public-key cryptosystem (PKC), it is not necessary for the key channel
to be secure.
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Public-Key Cryptography

Properties of a PKC

Unlike conventional cryptosystems, messages encrypted using public key
cryptosystems contain sufficient information to uniquely determine the
plaintext and the key (given enough ciphertext, resources etc)

The entropy contained in these systems is zero.

This is the exact opposite of a perfectly secret system like the
one-time pad.

Security in a public key cryptosystem lies solely in the computational cost
of computing the plaintext and/or private key from the ciphertext
(computional security).
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Public-Key Cryptography

Hybrid Encryption

All PKC’s in use today are much slower (by a factor of 1000-1500 or so)
than conventional systems like AES, so they are generally not used for bulk
encryption. Most common uses:

Encryption and transmission of keys for conventional cryptosystems
(hybrid encryption)

Authentication and non-repudiation via digital signatures (later).
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More Number Theory

RSA Motivation

In 1978, Ron Rivest, Adi Shamir and Len Adleman came up with the first
actual realization of a PKC, called RSA after their initials.

This requires more number theory!
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More Number Theory

Linear Diophantine Equations

Solve the linear Diophantine equation

ax + by = 1

given a, b ∈ Z, b > 0, and gcd(a, b) = 1.

If gcd(a, b) 6= 1, there is no solution.

In general, an equation of the form ax + by = c has a solution if and
only if gcd(a, b) divides c .

If b < 0, use −b and solve for (x ,−y).

Diophantine equations are named after Diophantus, a Greek
mathematician who lived around 300-200 BCE.
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More Number Theory

Euclidean Algorithm

Repeated division with remainder.

Given a, b ∈ Z, b > 0, and gcd(a, b) = 1 :

a = bq0 + r0 q0 = ba/bc, 0 < r0 < b

b = r0q1 + r1 q1 = bb/r0c, 0 < r1 < r0

r0 = r1q2 + r2 q2 = br0/r1c, 0 < r2 < r1
...

rn−3 = rn−2qn−1 + rn−1 rn−1 = gcd(a, b)

rn−2 = rn−1qn + rn rn = 0
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More Number Theory

Termination

Notice that the sequence of remainders (the ri ) is strictly decreasing

thus, the sequence is finite (algorithm terminates).

Theorem 1 (Lamé, 1844)

n < 5 log10 min(a, b).

More exactly, Lamé’s Theorem states

n ≤ logτ (min(a, b) + 1)

where τ = (1 +
√

5)/2 is the golden ratio.
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More Number Theory

Extended Euclidean Algorithm

Let A−2 = 0, A−1 = 1, B−2 = 1, B−1 = 0 and

Ak = qkAk−1 + Ak−2, Bk = qkBk−1 + Bk−2

for k = 0, 1, . . . .

We have An = a and Bn = b (n from above), and

AkBk−1 − BkAk−1 = (−1)k−1 .

Putting k = n yields

AnBn−1 − BnAn−1 = (−1)n−1

a(−1)n−1Bn−1 + b(−1)nAn−1 = 1 .

Thus, a solution of ax + by = 1 is given by

x = (−1)n−1Bn−1, y = (−1)nAn−1 .
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More Number Theory

Modular Inverses

Recall that Z∗m = {a ∈ Zm | gcd(a,m) = 1} is the set of integers between
1 and m that are coprime to m.

Z∗m consists of exactly those integers that have modular inverses:

for every a ∈ Z∗m, there exists x ∈ Z∗m such that ax ≡ 1 (mod m).
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More Number Theory

Computing Modular Inverses

Given a ∈ Z∗m, solve the linear congruence ax ≡ 1 (mod m) for x ∈ Z∗m.

We want x such that

m | ax − 1 =⇒ ax − 1 = ym =⇒ ax −my = 1 .

Can be solved using the Extended Euclidean Algorithm.

We only need to compute the Bi because we only need x , not y .

Example 3

For a ≡ 95x ≡ 1 (mod 317), we obtain x =≡ −10 (mod 317), so x ≡ 307
(mod 317) is the modular inverse of 95.
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The RSA Cryptosystem

The RSA Cryptosystem

Named after Ron Rivest, Adi Shamir, and Len Adleman, 1978.

Initially, NSA pressured these guys to keep their invention secret.

Both encryption and decryption are modular exponentiations (same
modulus, different exponents):

Encryption: C ≡ Me (mod n)

Decryption: M ≡ Cd (mod n)
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The RSA Cryptosystem

RSA Setup

The designer

1 Selects two distinct large primes p and q (each around 21536 ≈ 10463)

2 Computes n = pq and φ(n) = (p − 1)(q − 1).

3 Selects a random integer e ∈ Z∗φ(n) (so 1 < e < φ(n) and

gcd(e, φ(n)) = 1).

4 Solves the linear congruence

de ≡ 1 (mod φ(n))

for d ∈ Z∗φ(n).

5 Keeps d secret and makes n and e public:

the public key is K1 = {e, n}
the private key is K2 = {d} (or {d , p, q}, discussed later).
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The RSA Cryptosystem

RSA Encryption and Decryption

Encryption: Messages for the designer are integers in Z∗n
if a message exceeds n, block it into less-than-n size blocks

To send M encrypted, compute and send

C ≡ Me (mod n) where 0 < C < n .

Decryption: To decrypt C , the designer computes

M ≡ Cd (mod n) where 0 < M < n .
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The RSA Cryptosystem

Why this Works

We have
Cd ≡ (Me)d ≡ Med (mod n),

Since d is chosen such that ed ≡ 1 (mod φ(n)) we have

ed = kφ(n) + 1 for some k ∈ Z,

and
Med ≡ Mkφ(n)+1 ≡ MMkφ(n) ≡ M(Mφ(n))k (mod n) .

Euler’s Theorem states that aφ(n) ≡ 1 (mod n), so we have

Cd ≡ M(Mφ(n))k ≡ M(1)k ≡ M (mod n) .
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The RSA Cryptosystem

What if gcd(M , n) 6= 1?

We have assumed that gcd(M, n) = 1 in the description of RSA and for
applying Euler’s Theorem. Is this a problem?

Can prove that encryption/decryption still work (Assignment 2!).

The probability that gcd(M, n) 6= 1 is 1/p + 1/q, i.e., very small.

Note that since n = pq and M < n, gcd(M, n) ∈ {1, p, q}, and thus
in these extremely rare cases we would likely find a factor of n.

Paranoid users can guarantee that gcd(M, n) = 1 by simply taking
messages in blocks such that M < p, q (twice as slow).
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The RSA Cryptosystem Efficiency of RSA

Efficiency of RSA

Set-up (need only be done once):

Prime generation uses a pseudo-random number generator (PRNG),
followed by a probable primality test (like the Fermat test).

Generating e again requires a PRNG and one gcd calculation (EA) –
or just pick you favourite e.

Computing n and φ(n) is negligible.

Computing d requires finding a modular inverse (EEA)

Encryption and Decryption: modular exponentiation (like Diffie-Hellman).
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The RSA Cryptosystem Security of RSA

Security of RSA

Resides in the presumed difficulty of the Integer Factorization Problem:

Given an integer N, find a non-trivial factor of N.
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The RSA Cryptosystem Security of RSA

Attacks on RSA

The following approaches break RSA:

Factoring n

⇓ φ(n) = (p − 1)(q − 1) ⇑ Assignment 4

Finding φ(n)

⇓ Proceed as designer ⇑ See note below
Finding the private key d

Note 2

There is an efficient algorithm that given any multiple of φ(n) finds φ(n)
with high probability. Note that ed − 1 is such a multiple.
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The RSA Cryptosystem Security of RSA

Attacks on RSA, cont.

All three approaches (prev. slide) are computationally equivalent:

if one can be achieved, any of the other two one can be achieved with
very little computational overhead.

i.e., there are three trapdoors here: d , φ(n), and {p, q}

There is no proof that RSA is secure!

no proof that factoring is hard

not proven that other methods to compute M given C , e, n do not
exist, which do not rely on factoring (i.e., not known whether
breaking RSA is equivalent to factoring n)

Nevertheless, we need to design RSA systems such that n = pq cannot be
factored easily.
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The RSA Cryptosystem Security of RSA

Factoring Record

The fastest known factoring algorithm is again the Number Field Sieve
(slightly different from the DLP NFS, but invented first). Run time:

exp
(
c(log n)1/3(log log n)2/3

)
= nc(log n/ log log n)2/3

with

c =
3

√
64

9
= 1.92 . . .

Current RSA modulus factoring record: RSA-768 (232 digits, 768 bits),
Thorsten Kleinjung et. al., December 12, 2009.
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The RSA Cryptosystem Security of RSA

Choice of RSA Parameters

Requirements for p and q:

1 Probable primes with high probability (say 2−100) — use a good
probabilistic primality test.

2 Large: at least 21536 ≈ 10463 (so n is 3072 bits)

3 Not too close together; |p − q| > 2128 for p, q ≈ 21536

4 p − 1, q − 1, p + 1, q + 1 must all have a large prime factor (see p.
150 of the Handbook of Applied Cryptography). Eg. pick p = 2p′ + 1
to be a Sophie Germain prime so that (p + 1)/4 = (p′ + 1)/2 is prime
or has a large prime factor; same for q.

5 p/q should not be near the ratio of two small (relatively prime)
integers a/b (say a, b ≤ 100).
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The RSA Cryptosystem Security of RSA

Choice of RSA Parameters, cont.

Requirement for e:

For efficiency reasons, e is often chosen small; a popular choice is
e = 216 + 1 = 65537 (great for binary exponentiation, only two ‘1’
bits).

Beware of really small e for some applications; see Assignment 2.

In practice, can use e = 3, but only when RSA is used in conjunction
with a secure padding mechanism (eg. OAEP — coming soon)

Requirement for d :

d > n0.292 (Boneh & Durfee 2000).
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The RSA Cryptosystem Security of RSA

Advantages of RSA

Advantages:

1 Seems to be secure.

2 Key size is “relatively” small — two 463 digit numbers — although
other PKC’s have smaller keys (eg. elliptic curve systems).

3 No message expansion — ciphertexts and plaintexts have the same
length.

4 Can be used as a signature scheme (covered later).
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The RSA Cryptosystem Security of RSA

Disadvantages of RSA

Disadvantages:

1 Very slow compared with DES, AES, and other symmetric key
cryptosystems. Decryption is also slower than elliptic curve based
systems.

2 Finding keys is fairly expensive.

3 Security is unproven

4 “Textbook” version (what we’ve been discussing!) leaks information
and is vulnerable to active attacks (later).
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