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Hash Functions

Hash Function

Often referred to as the “work horse” of cryptography — they are
ubiquitous in crypto.

Definition 1 (Hash function)

A function H : {0, 1}∗ → {0, 1}m (m ∈ N) that is easy to compute. An
image x = H(M) is referred to as a message digest or a digital fingerprint
or a checksum or simply a hash.

Hash functions thus satisfy two properties:

Compression: H maps an input M of arbitrary bit length to an output
of fixed bit length.

Ease of computation: for any input M, H(M) is easy to compute.
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Hash Functions

Cryptographic Requirements

Desirable properties for hash functions in the context of cryptography:

Pre-image resistance: given any hash value x , it is computationally
infeasible to find any input M for which H(M) = x .

Second pre-image resistance or weak collision resistance: given any M,
it is computationally infeasible to find M ′ 6= M with H(M) = H(M ′).

Collision resistance or strong collision resistance: it is computationally
infeasible to find two distinct inputs M and M ′ such that
H(M) = H(M ′).

Note that collision resistance is the strongest of these three requirements.
In other words: collision resistance ⇒ weak collision resistance ⇒
pre-image resistance
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Hash Functions

Uses of Cryptographically-Secure Hash Functions

Definition 2

A hash function is cryptographic(ally secure) if it is collision resistant.

Some example applications:

In digital signatures to prevent impersonation (sign H(M) instead of
M — later)

Data integrity without secrecy (e.g. downloading large files, compare
checksum before and after download)

Data integrity with secrecy (see below)

Commitment (can verify H(M) to see if M was committed to)

Randomness (e.g. one-time passwords, OAEP)
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Hash Functions

Eg. Data Integrity with Secrecy

Using hashing plus encryption:

Sender sends C = EK (M‖x) with x = H(M)

Receiver decrypts C to obtain M ′, x ′ and checks that H(M ′) = x ′.

Idea:

Adversary cannot manipulate ciphertext blocks in such a way that
H(M ′) = x ′.

May be possible if H is not cryptographically secure (eg. WEP:
combination of stream cipher and checksum).
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Hash Functions Attacks on Hash Functions

Attacks on Hash Functions

Objectives of adversaries vs. hash functions:

Find a pre-image: given any hash, create a corresponding message
with that hash.

Find a weak collision: given a message, modify it to another message
with the same hash.

Find a collision: find two messages with the same hash.
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Hash Functions Attacks on Hash Functions

Brute-force Attacks

Like block ciphers, brute force should be the best attack.

For an m-bit hash function:

Pre-images and weak collisions: 2m attempts on average

Strong collisions: 2m/2 attempts on average due to the birthday
paradox — probability of having at least one duplicate out of k
random numbers between 1 and n is of order

√
n

Recommended sizes: m = 160, 256, 394, 512 (provide 80, 128, 192, and
256 bits of security)
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Hash Functions Attacks on Hash Functions

Cryptanalytic Attacks

Iterated hash functions are composed of rounds (most common design)

Repeated use of compression function f — takes n-bit input from the
previous step (chaining variable) and a b-bit block from M; produces
n-bit output.

Input to H : message M consisting of L b-bit blocks Y0, . . . ,YL−1
(padded to suitable length).

CV0 = IV = initial n-bit value (e.g. all zeros).

CVi = f (CVi−1,Yi−1), 1 ≤ i ≤ L

H(M) = CVL

Iterated hash functions can be set up in such a way so that if f is
collision-resistant, so is H (Merkle 1989 and Damgard 1989).
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Hash Functions Attacks on Hash Functions

Idea for Attacking

Exploit the structure of the hash function (similar to block ciphers):

Analytically attack the rounds of a hash function

Focus on collisions in function f .

Almost all widely-used hash function have succumbed to this type of
attack (due to Wang et al).
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Hash Functions Examples of Hash Functions

SHA-1

Secure Hash Algorithm 1: developed by NIST in 1993 (FIPS 180 and FIPS
180-1).

Iterated round hash function with hash length 160 bits

Finding collisions:

Wang, Yin, Yu (Feb. 2005) — 269 hash ops

Wang, Yao, Yao (Aug. 2005) — 263 hash ops

Stephens (2012) — 260 hash ops

Significantly less than theoretical maximum (280) — therefore, considered
vulnerable.
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Hash Functions Examples of Hash Functions

Other Hash Functions

MD5 — 128-bit hash length, developed by Rivest.

Essentially broken (Wang et. al., 2004). Can find MD5 collisions on a
laptop in 8 hours or less (Klima, 2005).

Revised hash standard SHA-2 consisting of SHA-256, SHA-384, SHA-512

modifications of SHA-1 to provide 128, 192, and 256 bits of security
for compatibility with AES (see FIPS 180-4).

current recommendation: use one of these in place of SHA-1.

Charles, Goren, Lauter (2009) — hash function based on expander graphs

provable security: finding collisions reduces to computing computing
isogenies between supersingular elliptic curves

See NIST’s hash function page in the Cryptographic Tool Kit for more.
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Hash Functions SHA-3: Keccak

SHA-3: Keccak

After the 2005 attack on SHA-1, NIST initiated a competition for new
hash algorithms, similar to the AES competition; see
//csrc.nist.gov/groups/ST/hash/.

The SHA-3 winner, Keccak (pronounced “ketchuk”) was announced on
October 2, 2012.

Invented by Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles
van Assche.

Resources:

NIST FIPS 202

http://keccak.noekeon.org/Keccak-reference-3.0.pdf

KECCAK presentation given to NIST by the Keccak inventors on Feb.
6, 2013 (on “handouts” page)
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Hash Functions SHA-3: Keccak

Sponge Construction

Keccak is based on a sponge design; see http://sponge.noekeon.org/.

Hash function: arbitrary input length, fixed output length

Stream cipher: fixed input length, arbitrary output length

Sponge function: arbitrary input length, variable user-supplied output
length

Sponges can be used to build various cryptographic primitives (stream
ciphers, hash functions, message authentication codes)
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Hash Functions SHA-3: Keccak

Sponges – Overview

Ingredients of a sponge function:

A width b (an integer)

A bit rate r (an integer < b)

An input S (a bit string of length b)

A fixed-length permutation f that operates on S

A padding rule “pad ” that pads blocks of length r to blocks of
length b.

The capacity of the sponge is the padding amount c = b − r .

The padding rule for Keccak simply appends the string 100 · · · 0︸ ︷︷ ︸
c-2 zeros

1 to each
r -bit block (called multi-rate padding).
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Hash Functions SHA-3: Keccak

Sponge Function – Absorb

The input to the absorption phase is the message M — padded so the
total length is a multiple of r — consisting of r -bit blocks P1, . . . ,PL.

Absorption Phase — “x-or & permute”

S ← 0b (b zeros)
For i = 1 to L do

S ← S ⊕ pad(Pi )
S ← f (S)

end for

Mike Jacobson (University of Calgary) CPSC/PMAT 669 Topic 8 16 / 64

http://keccak.noekeon.org/Keccak-reference-3.0.pdf


Hash Functions SHA-3: Keccak

Sponge Function – Squeeze

The squeezing phase outputs a hash of the message M whose bit length is
a user-supplied value m.

Squeezing Phase — “append & permute”

Z ← first r bits of S
While length(Z ) < m do

S ← f (S)
append the first r bits of S to Z

end while
H(M)← first m bits of Z
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Hash Functions SHA-3: Keccak

SHA-3 Specification

SHA-3/Keccak specifies

hash lengths m = 224, 256, 384, 512 (just like SHA-2)

capacities c = 2m

widths b = 25, 50, 100, 200, 400, 800, 1600 (default is 1600)

The internal state to the Keccak permutation f , denoted A, is a
3-dimensional bit-array of dimensions 5× 5× 2` where 0 ≤ ` ≤ 6, yielding
the above widths (default is ` = 6, with a state of dimensions 5× 5× 64).

The Keccak permutation f iterates over multiple rounds. In SHA-3, the
number of rounds Nr is 12 + 2`. (E.g. Nr = 24 for for b = 1600.) Each
round of f operates on the state A and is the composition of 5 functions:

ι ◦ χ ◦ π ◦ ρ ◦ θ

where θ, ρ, π and χ are identical for each round, and ι incorporates round
constants that vary by round.
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Hash Functions SHA-3: Keccak

The Keccak Permutation f

Input: bit string S of length b

Output: bit string S of length b

1 Convert S to a 5× 5× 2` state A (where b = 5 · 5 · 2`)
2 For i = 0 to Nr − 1 do

A← ι(χ(π(ρ(θ(A)))), i)

3 Convert A to a string S of length b

4 Output S

The mathematical description of each of the 5 maps θ, ρ, π, χ and ι can
be found on page 8 of Keccak-reference-3.0.pdf. They can all be
implemented using only bitwise XOR, AND, NOT, but no table look-ups,
arithmetic or data-dependent rotations (very fast).
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Hash Functions SHA-3: Keccak

Geography of Keccak States

State entries are denoted A[x , y , z ] where

0 ≤ x ≤ 4 , 0 ≤ y ≤ 4 , 0 ≤ z ≤ 2` − 1 .

E.g. for b = 1600 (` = 6), we have 0 ≤ x ≤ 4, 0 ≤ y ≤ 4, 0 ≤ z ≤ 63.

Navigating States:

Rows: A[0, y , z ] A[1, y , z ] A[2, y , z ] A[3, y , z ] A[4, y , z ]
Columns: A[x , 0, z ] A[x , 1, z ] A[x , 2, z ] A[x , 3, z ] A[x , 4, z ]
Lanes: A[x , y , 0] A[x , y , 1] A[x , y , 2] · · · A[x , y , 2` − 1]
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Hash Functions SHA-3: Keccak

Converting Bit Strings to States

Suppose the input string consists of bits

s0, s1, . . . , sb−1 .

Then
A[x , y , z ] = s2`(5y+x)+z .

So A is populated lane-wise, “floor” by “floor”:

starting with the bottom row of lanes (ground floor)

followed by the row of lanes second from the bottom (second floor)

followed by the middle, then the second from the top, then the top
row of lanes
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Hash Functions SHA-3: Keccak

Converting Bit Strings to States (cont’d)

We assign the bits si (0 ≤ i ≤ b − 1) to A in the following order:

y = 0 x = 0 z = 0, 1, . . . 2` − 1
x = 1 z = 0, 1, . . . 2` − 1

...
...

x = 4 z = 0, 1, . . . 2` − 1

y = 1 x = 0 z = 0, 1, . . . 2` − 1
x = 1 z = 0, 1, . . . 2` − 1

...
...

x = 4 z = 0, 1, . . . 2` − 1
...

...
...

y = 4 x = 0 z = 0, 1, . . . 2` − 1
...

...
x = 4 z = 0, 1, . . . 2` − 1
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Hash Functions SHA-3: Keccak

Converting States to Bit Strings

Conversion from the final state A to the bit string S is done in by reversing
this process (order lane–row–column):

S = A[0, 0, 0] A[0, 0, 1] . . . A[0, 0, 2` − 1]

A[1, 0, 0] A[1, 0, 1] . . . A[1, 0, 2` − 1]

A[2, 0, 0] A[2, 0, 1] . . . A[2, 0, 2` − 1]

A[3, 0, 0] A[3, 0, 1] . . . A[3, 0, 2` − 1]

A[4, 0, 0] A[4, 0, 1] . . . A[4, 0, 2` − 1]

A[0, 1, 0] A[0, 1, 1] . . . A[0, 1, 2` − 1]
· · ·

A[4, 1, 0] A[4, 1, 1] . . . A[4, 1, 2` − 1]

· · ·

A[0, 4, 0] A[0, 4, 1] . . . A[0, 4, 2` − 1]
· · ·

A[4, 4, 0] A[4, 4, 1] . . . A[4, 4, 2` − 1]
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Hash Functions SHA-3: Keccak

The Map θ

θ adds to each bit A[x , y , z ] the bitwise x-or of the parities of the two
columns A[x − 1, ∗, z ] and A[x + 1, ∗, z − 1], where the x-index is taken
modulo 5 and the z-index modulo 2`.

1 For all pairs (x , z) with 0 ≤ x ≤ 4 and 0 ≤ z ≤ 2`−1 do
// x-or all columns A[x , ∗, z ] to compute parities
C [x , z ]← A[x , 0, z ]⊕ A[x , 1, z ]⊕ A[x , 2, z ]⊕ A[x , 3, z ]⊕ A[x , 4, z ]

2 For all pairs (x , z) with 0 ≤ x ≤ 4 and 0 ≤ z ≤ 2`−1 do
D[x , z ]← C [(x − 1) mod 5, z ]⊕ C [(x + 1) mod 5, (z − 1) mod 2`]

3 For all triples (x , y , z) with 0 ≤ x ≤ 4, 0 ≤ y ≤ 4, 0 ≤ z ≤ 2`−1 do
A[x , y , z ]← A[x , y , z ]⊕ D[x , z ]

θ provides a high level of diffusion.
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Hash Functions SHA-3: Keccak

The Map ρ

ρ rotates the bits of each lane by adding to the z-coordinate an offset
modulo 2` (circular shift along the lane) as given in the following table:

x = 3 x = 4 x = 0 x = 1 x = 2

y = 2 153 231 3 10 171
y = 1 55 276 36 300 6
y = 0 28 91 0 1 190
y = 4 120 78 210 66 253
y = 3 21 136 105 45 15

Consult pages 12-13 of FIPS 202 or page 8 of Keccak-reference-3.0.pdf to
see how these offsets are calculated.

ρ disperses slices A[x , y , ∗] for more diffusion.
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Hash Functions SHA-3: Keccak

The Map π

π rearranges all the lanes, moving lane

A[x , y , ∗]

to lane
A[(x + 3y) mod 5, x , ∗] .

This lane dispersion provides yet more diffusion.
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Hash Functions SHA-3: Keccak

The Map χ

χ x-or’s each bit A[x , y , z ] with the non-linear function of two bits in the
same row given by

A[(x + 1) mod 5, y , z ] ∧ A[(x + 2) mod 5, y , z ]

where A denotes the bit complement of A and ∧ denotes logical “and”
(multiplication modulo 2).

χ is the only non-linear map within Keccak.
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Hash Functions SHA-3: Keccak

The Map ι

ι x-or’s the ` bits A[0, 0, 2j − 1] (0 ≤ j ≤ `) with round constants
rc(j + 7i) where i is the round number.

Here, rc[t] is the constant coefficient of x t modulo x8 + x6 + x5 + x4 + 1
which can be obtained via some simple bit x-ors and truncations as the
output of a linear feedback shift register (LSFR) (see page 16 of FIPS
202).

ι disrupts symmetry.

ι acts only on a few bits in lane A[0, 0, ∗], but the lane rearrangement π
and the slice dispersion ρ ensure that this action affects every lane of A.
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Hash Functions SHA-3: Keccak

Concluding Remarks on SHA-3 and Keccak

Keccak is secure against all known attacks.

In addition to the four hash functions SHA3-m that produce hashes of
lengths m = 224, 256, 384, 512 using capacities c = 2m, the SHA-3
standard supports two other Keccak-based hash functions SHAKE128 and
SHAKE256 that produce hashes of the same four lengths m using
respective fixed capacities 256 and 512. They are as yet not approved
(guidelines for use forthcoming).

To ensure domain separation, the SHA3 functions are distinguished from
the SHAKE functions by appending different suffixes to the input
message M (‘01’ for SHA3 and ‘1111’ for SHAKE).
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Message Authentication Codes (MACs)

Message Authentication Codes (MACs)

A small, fixed-size, key-dependent block that is appended to a message to
check data integrity.

Similar to a hash function, but keyed.

Definition 3 (Message authentication code (MAC))

A single-parameter family {CK}K∈K of many-to-one functions
CK :M→ {0, 1}n (n ∈ N) satisfying:

Ease of computation: For any M ∈M and K ∈ K, CK (M) is easy to
compute.

Computation resistance: for any K ∈ K, given zero or more
message/MAC pairs (Mi ,CK (Mi )), it is computationally infeasible to
compute any new message/MAC pair (M,CK (M)), M 6= Mi for all i .
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Message Authentication Codes (MACs)

Data Integrity using MACs

Computation-resistance implies data integrity (without secrecy):

Sender and receiver share a secret key K

Sender computes MAC = CK (M) and sends (M,MAC )
(unencrypted!)

Receiver computes MAC ′ = CK (M) and checks if MAC ′ = MAC . If
they match and CK is computation resistant, the integrity of M is
preserved.

Similar to encryption, but (a) no secrecy, (b) MACs need not be reversible,
(c) there are many messages with the same MAC.
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Message Authentication Codes (MACs)

Sender Authentication using MACs

MACs also provide sender authentication in a similar manner to encryption

only sender or receiver, who knows K could generate the MAC.

Note: Non-repudiation of data origin not provided

either party possessing K can generate MACs.

Why use MACs (instead of encrypting message plus checksum/hash)?

Sometimes only integrity is needed (no secrecy).

Sometimes need integrity to persist longer than the encryption (eg.
archival use)
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Message Authentication Codes (MACs)

More on MACs

Note 1

MAC should depend equally on all bits of the message. Given valid
message/MAC pair, it should still be hard to find another valid pair even if
only one bit of the message is modified.

Note 2

Apply first MAC, then encryption to message with MAC appended, rather
than vice versa

C = EK1(M‖MACK2(M)) — if encryption is defeated, message
integrity is still preserved.

(C‖MACK2(C )) with C = EK1(M) — preserves only integrity of
ciphertext which is useless if encryption is defeated
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Message Authentication Codes (MACs)

Attacks on MACs

Objectives of adversaries vs. MACs (without prior knowledge of K ):

Compute a new message/MAC pair (M,CK (M)) for some message
M 6= Mi , given one or more pairs (Mi ,CK (Mi )).

Known-text, chosen-text, and adaptive-chosen-text variations are
possible.

Can attack MAC-space or key space:

Brute-force attack requires effort min{
⌈
m
n

⌉
2m, 2n} (m-bit MAC, n-bit

key)

As usual, this should be best possible.
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Message Authentication Codes (MACs) Example MACs

CMAC

A secure block cipher (satisfying additional statistical properties) can be
used to generate MACs. Two methods are:

1 CBC-MAC:

Encrypt the message (zero IV, last block padded with 0s) using CBC
mode.
The last cipher block (whose bits are dependent on all the key bits and
all message bits) is the MAC.

2 CFB-MAC: Same idea as CBC-MAC

A CBC-MAC using DES appears in both FIPS 113 and the ANSI X9.17
standard.
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Message Authentication Codes (MACs) Example MACs

Problem with CBC-MAC

Problem: only secure if messages of one fixed length are processed
(Bellare, Killian, Rogaway 2000)

Solution (CMAC):

Use three keys, one at each step of the chaining, two for the last
block (Black, Rogaway 2000).

Second two keys may be derived from the encryption key (Iwata,
Kurosawa 2003).

Specified for use with AES and 3DES in NIST Special Pub. 800-38B

Can be proven secure as long as the underlying block cipher’s output
is indistinguishable from a random permutation.

No known weaknesses.
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Message Authentication Codes (MACs) Example MACs

HMAC

Basic idea: HMAC = H(K1‖H(K2‖M)) where H is a cryptographically
secure hash function and K is a secret key.

Bellare, Canetti, Krawczyk (CRYPTO 1996). Complete description in
FIPS 198.

Provable security, equivalent to one of:

computing an output of the compression function of H assuming the
IV is unknown,

finding collisions of the hash function assuming the IV is unknown
(birthday attack applies, but more difficult because oracle is required)
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Digital Signatures

Digital Signatures: Definition

Data origin authentication is usually achieved by means of a signature, i.e.
a means by which the recipient of a message can authenticate the identity
of the sender.

Definition 4 (Digital signature)

A means for data authentication that should have two properties:

1 Only the sender can produce his signature.

2 Anyone should be easily able to verify the validity of the signature.
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Digital Signatures

Digital Signatures: Observations

Observations:

Properties 1 and 2 provide non-repudiation: if there is a dispute over
a signature (a receiver claims that the sender signed the message,
whereas the signer claims he didn’t), anyone can resolve the dispute.
For ordinary written signatures, one might need a hand-writing expert.

Signatures are different from MACs:

both sender and receiver can generate a MAC, whereas only the sender
can generate a signature.
only sender and receiver can verify a MAC, whereas anyone can verify a
signature.

In order to prevent replay attacks (replay a signed message later), it
may be necessary to include a time stamp or sequence numbers in the
signature.
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Digital Signatures

Signature Capable PKCs

Definition 5 (Signature capability)

A PKC is signature capable if M = C and EK1(DK2(C )) = C for all C ∈ C.

So in a signature capable PKC, decryptions are right and left inverses
(i.e. honest-to-goodness inverses) of encryptions.

Example 6

RSA has signature capability. ElGamal and Goldwasser-Micali do not.
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Digital Signatures

Signatures Without Secrecy Using PKC

Alice wishes to send a non-secret message M to Bob along with a
signature S that authenticates M to Bob.

She sends (A,M, S) where

A is her identity,

M is the message,

S = DA(M) is the “decryption” of M under her private key.

To verify S , Bob

checks A and looks up Alice’s public key,

computes the “encryption” EA(S) of S under Alice’s public key,

accepts the signature if and only if M = EA(S)

Note that EA(S) = EA(DA(M)) = M if everything was done correctly.
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Digital Signatures

Properties

Anyone can verify a signature since anyone can encrypt under Alice’s
public key.

In order to forge a signature of a particular message M, Eve would have to
be able to do operations using Alice’s private key.
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Digital Signatures

Signatures With Secrecy Using PKC

Alice wishes to send an authenticated secret message M to Bob.

She sends (A,EB(S ,M)) where A and S are as before and EB denotes
encryption under Bob’s public key.

To verify S , Bob decrypts EB(S ,M) and then verifies S as before.
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Digital Signatures Security of Signatures

Security of Signatures

Definition 7 (Existential forgery)

A signature scheme is susceptible to existential forgery if an adversary can
forge a valid signature of another entity for at least one message.

Goals of the attacker:

total break — recover the private key

universal forgery — can generate a signature for any message

selective forgery — can generate a signature for some message of
choice

existential forgery — can generate a signature for at least one
message
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Digital Signatures Security of Signatures

Existential Forgery on PKC-Generated Signatures

Consider generating a signature S to a message M using a
signature-capable PKC as described above.

Eve can create a forged signature from Alice as follows:

1 Selects random S ∈M,

2 Computes M = EA(S),

3 Sends (A,M, S) to Bob.

Bob computes EA(S) which is M and thus accepts the “signature” S to
“message” M.

Usually foiled by language redundancy, but may be a problem is M is
random (eg. a cryptographic key).
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Digital Signatures Security of Signatures

Preventing Existential Forgery

Solution:

Alice sends (A,M,S = DA(H(M))) where H is a public pre-image
resistant hash function on M.

Bob computes EA(S) and H(M), and accepts the signature if and
only if they match.

Foils the attack:

if Eve generates random S , then she would have to find X such that
H(X ) = EA(S) (i.e. a pre-image under H), and send (A,X , S) to Bob.

Bob then computes EA(S) and compares with H(X ).

Not computationally feasible if H is pre-image resistant.
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Existential Forgery if H is not Collision Resistant

Suppose Alice uses a pre-image resistant hash function as described above
to sign her messages.

If H is not collision resistant, Eve can forge a signature as follows:

1 Find M,M ′ ∈M with M 6= M ′ and H(M) = H(M ′) (a collision)

2 If S is the signature to M, then S is also the signature to M ′, as
EA(S) = H(M) = H(M ′)

Note that if Eve intercepts (A,M,S), then she could also find a weak
collision M ′ with H(M) = H(M ′).
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Summary on Signatures via PKC

Use a secure signature capable PKC and a cryptographic (i.e. collision
resistant) hash function H (security depends on both).

Signing H(M) instead of M also results in faster signature generation if M
is long.

H should be a fixed part of the signature protocol, so Eve cannot just
substitute H with a cryptographically weak hash function.
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GMR-Security

In practice, signature schemes must be resistant to active attacks. We
need the equivalent of IND-CCA2 for signatures.

Definition 8 (GMR-security)

A signature scheme is said to be GMR-secure if it is existentially
unforgeable by a computationally bounded adversary who can mount an
adaptive chosen-message attack.

In other words, an adversary who can obtain signatures of any messages of
her own choosing from the legitimate signer is unable to produce a valid
signature of any new message (for which it has not already requested and
obtained a signature) in polynomial time.

GMR stands for Goldwasser-Micali-Rivest.
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GMR-Secure Versions of RSA

Example 9

RSA-PSS (Probabilistic Signature Scheme), a digital signature analogue of
OAEP, is GMR-secure in the random oracle model (ROM) assuming that
the RSA problem (computing eth roots modulo n) is hard.

Example 10

RSA with full-domain hash — use RSA signatures as usual, signing H(M),
but select the hash function H such that 0 ≤ H(M) < n (n is the RSA
modulus) for all messages M.

Called full-domain because the messages signed are taken from the
entire range of possible RSA blocks as opposed to a smaller subrange.

Also GMR-secure under same assumption as above.
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Signature Schemes

Examples of non-PKC-based signature schemes:

ElGamal — randomized, security based on DLP

Digital Signature Algorithm — variation of ElGamal with short
signatures

Feige-Fiat-Shamir — security based on computing square roots
modulo pq

Guillou-Quisquater — security based on the RSA problem of
computing e-th roots modulo pq

We’ll cover the first two here.
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Solving General Linear Congruences

We need to solve a general linear congruence of the form

ax ≡ b (mod m)

for x ∈ Z∗m, with m ∈ N and a ∈ Z∗m.

We already saw how to do this for b = 1; that’s just finding modular
inverses.

To solve ax ≡ b (mod m) for x : first solve az ≡ 1 (mod n) for z using
the Extended Euclidean Algorithm. Then x ≡ bz (mod n) as

ax ≡ a(bz) ≡ (az)b ≡ 1 · b ≡ b (mod n) .

Mike Jacobson (University of Calgary) CPSC/PMAT 669 Topic 8 52 / 64



Digital Signatures DLP-Based Signature Schemes

The El Gamal Signature Scheme

The El Gamal signature scheme is a variation of the El Gamal PKC (same
1985 paper). Security considerations are the same.

A produces her public and private keys as follows:

1 Selects a large prime p and a primitive root g of p.

2 Randomly selects x such that 0 < x < p − 1 and computes y ≡ g x

(mod p).

Public key: {p, g , y}
Private key: {x}

A also fixes a public cryptographic hash function H : {0, 1}∗ 7→ Zp−1.
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Signing and Verifying

A signs a message M ∈ {0, 1}∗ as follows:

1 Selects a random integer k ∈ Z∗p−1.

2 Computes r ≡ gk (mod p), 0 ≤ r < p.

3 Solves ks ≡ [H(M‖r)− xr ] (mod p − 1) for s ∈ Z∗p−1
4 A’s signature is the pair (r , s).

B verifies A’s signature (r , s) as follows:

1 Obtains A’s authentic public key {p, g , y}.
2 Verifies that 1 ≤ r < p; if not, reject.

3 Computes v1 ≡ y r r s (mod p) and v2 ≡ gH(M‖r) (mod p).

4 Accepts the signature if and only if v1 = v2.

Mike Jacobson (University of Calgary) CPSC/PMAT 669 Topic 8 54 / 64

Digital Signatures DLP-Based Signature Schemes

Proof of Correctness

Proof of correctness.

Note that ks + rx ≡ H(M, r) (mod p − 1). If the signature (r , s) to
message M is valid, then

v1 ≡ y r r s

≡ (g x)r (gk)s)

≡ g xr+ks

= gH(M‖r)

≡ v2 (mod p) .
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Security of ElGamal Signatures

GMR-secure in the ROM assuming that H takes on random values and
computing discrete logarithms modulo p is hard.

Formally, one shows that the DLP reduces to existential forgery,
i.e. that an algorithm for producing existential forgeries can be used
to solve the DLP.

If Step 2 of the verification is omitted (verifying that r < p), a universal
forgery attack is possible.

More exactly, if an attacker intercepts a signature (r , s) to a message
m, he can forge a signature (R, S) to an arbitrary message M.

The resulting R satisfies 0 ≤ R ≤ p(p − 1).
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Security of ElGamal Signatures, cont.

The public parameter g must be chosen verifiably at random (eg. publish
PRNG, seed, and algorithm used) in order to ensure that g is a primitive
root of p

If the same value of k is used to sign two messages, the private key x can
be computed with high probability.

Mike Jacobson (University of Calgary) CPSC/PMAT 669 Topic 8 57 / 64

Digital Signatures DLP-Based Signature Schemes

The Digital Signature Algorithm (DSA)

Invented by NIST in 1991 and adapted as the Digital Signature Standard
(DSS) in Dec. 1994.

Variation of El Gamal signature scheme, with similar security
characteristics, but much shorter signatures.
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DSA Setup

A produces her public and private keys as follows:

1 Selects a 512-bit prime p and a 160-bit prime q such that q | p − 1.

2 Selects a primitive root g of p.

3 Computes h ≡ g (p−1)/q (mod p), 0 < h < p. Note that hq ≡ 1
(mod p) by Fermat’s theorem, and if a ≡ b (mod q), then ha ≡ hb

(mod p).

4 Randomly selects x ∈ Z with 0 < x < q and computes y ≡ hx

(mod p)

Public key: {p, q, h, y} (4 · 512 = 2048 bits)
Private key: {x} (160 bits)

DSA also uses a cryptographically secure hash function H : {0, 1}∗ → Zq.
The DSS specifies that SHA-1 be used.
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Signing and Verifying

A signs message M ∈ {0, 1}∗ as follows:

1 Selects a random integer k with 0 < k < q.

2 Computes r ≡
(
hk (mod p)

)
(mod q), 0 < r < q.

3 Solves ks ≡ H(M) + xr (mod q). If s = 0, go back to step 1 (this
happens with negligible probability).

4 A’s signature is the pair {r , s} (320 bits, as opposed to 1024)

B verifies A’s signature as follows:

1 Obtains A’s authentic public key {p, q, h, y}.
2 Computes the inverse s∗ ∈ Z∗q of s (mod q).

3 Computes u1 ≡ H(M)s∗ (mod q) , u2 ≡ rs∗ (mod q), and
v ≡

(
hu1yu2 (mod p)

)
(mod q), 0 < v < q.

4 Accepts the signature (r , s) if and only if v = r .
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Proof of Correctness

Proof of Correctness.

Note that k ≡ (H(M) + x)s∗ (mod q) and

v ≡ hu1yu2

≡ hH(M)s∗y rs
∗

≡ hH(M)s∗hxrs
∗

≡ h(H(M)+xr)s∗

≡ hk ≡ r (mod p) .

Now v and r are integers strictly between 0 and q that are congruent
modulo the much larger modulus p. Hence v = r .
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Efficiency of DSA

Small signature (320 bits, much smaller than El Gamal) but the
computations are done modulo a 512-bit prime.

Congruence in step 3 of signature generation has a “+” whereas the one
in El Gamal has a “−”.

The DSA verification procedure is more efficient than the way verification
was described for ElGamal

requires only two modular exponentiations in step 2 as opposed to
three in ElGamal.

However, the one in ElGamal can be rewritten in the same efficient way

check if ry s
∗r ≡ g s∗H(M‖r) (mod p) where s∗ is the inverse of s

(mod p − 1).
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Security of DSA

Based on the belief that extracting discrete logs modulo q is hard (seems
reasonable).

Proof of GMR-security does not hold, because H(M) is signed as opposed
to H(M‖r) (reduction to DLP requires that the forger be forced to use the
same r for two signatures)

More information: “Another look at provable security” by Koblitz and
Menezes, J. Cryptology 2007; see “external links” page.
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Parameter Sizes for Public-Key Cryptography

Security level: key length for block cipher providing equivalent level of
difficulty to break

1024-bit RSA is estimated to provide 80 bits of security

should be paired with a 160-bit hash function and an 80-bit block
cipher (so that all three components equally strong).

Security levels and parameter/key sizes (NIST recommendations):

Security level (in bits) 80 112 128 192 256

Hash size (in bits) 160 224 256 384 512

RSA modulus (in bits) 1024 2048 3072 7680 15360
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