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Elliptic Curves

Motivation

Recall: El Gamal PKC and DSA signatures are generic in the sense that
they can work with any finite abelian group.

The most promising implementations of El Gamal and DSA signatures is
to use for the group G the set of points on an elliptic curve defined over a
finite field.

The corresponding discrete logarithm problem appears to be very difficult
(best known algorithms have exponential complexity).

can use smaller parameters than RSA for the same security level

shorter keys, possibly faster protocols
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Elliptic Curves

Key Sizes for Elliptic Curve Cryptography

NIST’s Recommendations for security level bit sizes (SP 800-57 part 1):

Security level 80 112 128 192 256

Hash function size 160 224 256 384 512

Elliptic curve group size 160 224 256 384 512
RSA modulus 1024 2048 3072 8192 15360

Elliptic Curve Cryptography was proposed in 1985 independently by N.
Koblitz and V. Miller.
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Elliptic Curves

Elliptic Curves

An elliptic curve is a curve with an equation

y2 = x3 + Ax + B

for quantities A,B in a field K with 4A3 + 27B2 6= 0.

Equivalent to the polynomial x3 + Ax + B having three distinct roots.

As a result, there is a unique tangent line to every point on the curve.

Elliptic curves make numerous appearances throughout math: in geometry,
analysis, topology, number theory (e.g. proof of Fermat’s Last Theorem),
crypto, . . .
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Elliptic Curves

An Example

The curve y2 = x3 − 5x over R
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Elliptic Curves

Geometry versus Algebra

Elliptic curves are geometric objects.

For cryptography, we need to be able to do algebra, so we need to perform
arithmetic on points on elliptic curves.

On Z∗p, the arithmetic operation was multiplication

On an elliptic curve, the operation is addition of points on the curve

Inverses in Z∗p are replaced by negatives of points

Squaring in Z∗p is replaced by point doubling

Exponentiation will be replaced by scalar multiplication:

nP = P + P + · · ·+ P︸ ︷︷ ︸
a times

for n ∈ N.
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Elliptic Curves

Elliptic Curve Arithmetic: Negation

The negative of a point P = (x , y) is its reflection on the x-axis:
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Elliptic Curves

Elliptic Curve Arithmetic: Negatives (cont’d)

Negative of P = (x , y) is −P = (x ,−y).
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Elliptic Curves

Intersections

Any line intersects an elliptic curve in exactly three points.

The intersection may not be “visible” (e.g. for an elliptic curve over
R, we would need to draw a picture over C)

For a vertical line, the third point of intersection is the “point at
infinity” which acts like 0.

For a tangent line, the tangent point needs to be double-counted.

Addition of points is done according the “cord & tangent law”: any three
collinear points on the elliptic curve sum to zero.

Hence the sum of two points is the negative of the third point of
intersection:

P + Q + R = 0 =⇒ P + Q = −R
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Elliptic Curves

Elliptic Curve Arithmetic: Addition

-10

-5

 0

 5

 10

-3 -2 -1  0  1  2  3  4  5  6

• + • = ?

Mike Jacobson (University of Calgary) CPSC/PMAT 669 Topic 9 11 / 31

Elliptic Curves

Elliptic Curve Arithmetic: Addition (cont’d)
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Elliptic Curves

Elliptic Curve Arithmetic: Addition (cont’d)
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Elliptic Curves

Elliptic Curve Arithmetic: Doubling

-10

-5

 0

 5

 10

-3 -2 -1  0  1  2  3  4  5  6

2 × • = ?

Mike Jacobson (University of Calgary) CPSC/PMAT 669 Topic 9 14 / 31

Elliptic Curves

Elliptic Curve Arithmetic: Doubling (cont’d)

-10

-5

 0

 5

 10

-3 -2 -1  0  1  2  3  4  5  6

2 × • + • = 0 ⇒ 2 × • = •

Mike Jacobson (University of Calgary) CPSC/PMAT 669 Topic 9 15 / 31

Elliptic Curves

Addition Formulas

Let

P1 = (x1, y1), P2 = (x2, y2) (P1 6= 0,P2 6=, P1 6= P2) .

Then

−P1 = (x1,−y1)

P1 + P2 = (λ2 − x1 − x2, −λ3 + λ(x1 + x2)− µ)

where

λ =


y2 − y1
x2 − x1

if P1 6= P2

3x21 + A

2y1
if P1 = P2

µ =


y1x2 − y2x1
x2 − x1

if P1 6= P2

−x31 + Ax1 + 2B

2y1
if P1 = P2
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Elliptic Curves

Properties of Point Addition

Let P,Q,R be arbitrary points on an elliptic curve. Then point addition
satisfies the following properties:

Closure: P + Q is a point on the curve.

Existence of an identity: adding the “point at infinity” to P leaves P
unchanged.

Existence of inverses: −P is a point on the curve.

Associativity: (P + Q) + R = P + (Q + R).

Commutativity: P + Q = Q + P.

Theorem 1

The points on an elliptic curve form a finite abelian group under point
addition.
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Elliptic Curves Elliptic Curves over Finite Fields

Elliptic Curves over Finite Fields

Consider E (Fq) where Fq is the finite field of q elements.

Then |E (Fq)| is finite, as there are only q possible values for each
point coordinate.

A theorem of Hasse states

q + 1− 2
√
q ≤ |E (Fq)| ≤ q + 1 + 2

√
q.

i.e., |E (Fq)| is roughly as large as q.

Can compute |E (Fq)| in polynomial time (Schoof, Kedlaya, etc...). In
practice, can handle q of several thousand digits.

The geometric analogue of point addition does not carry over to the finite
field case, but the algebraic formulas still work.

Thus, E (Fq) is a finite abelian group under point addition.
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Elliptic Curves Elliptic Curves over Finite Fields

Which Finite Fields?

Elliptic curves over Fp where p is a large prime admit efficient software
implementations. The formulas are the same as above if p > 3.

Example 1

Let E : Y 2 = X 3 + X + 1. Then P = (3, 10) and Q = (9, 7) are both
points in E (F23). We have P + Q = (17, 20) and 2P = (7, 12).

Elliptic curves over GF (2n) are also attractive because they admit efficient
hardware implementations.

slightly different formulas required
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Elliptic Curves Elliptic Curves over Finite Fields

Elliptic Curve Discrete Logarithm Problem

Since E (Fq) is a finite abelian group under point addition, it can be used
in any generic protocol like Diffie-Hellman or El Gamal.

The additive variant of g x is computing xP, which can also be done
efficiently with the binary exponentiation algorithm.

The corresponding discrete logarithm problem is to compute x given
points P and xP.

Except for a few special cases, the best-known algorithms for solving the
elliptic curve discrete logarithm problem are exponential in lg q, namely
O(
√
q).

To achieve 80, 112, 128, 192, and 256 bit security, we choose q with
160, 224, 256, 394, or 512 bits, respectively.

Significantly smaller than corresponding sizes requried for RSA or El
Gamal over Z∗p
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Elliptic Curves Elliptic Curves over Finite Fields

Hyperelliptic Curves

An equally secure setting for discrete log based crypto is that of genus 2
hyperelliptic curves: y2 = x5 + ax3 + bx2 + cx + d . (Koblitz 1989)
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Arithmetic is conducted on pairs of points, with any three pairs of
points lying on a cubic summing to 0.

More complicated, but can choose p of half size (e.g. 128 bits) for the
same level of security.
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Elliptic Curve Cryptosystems

Examples of Cryptosystems Using Elliptic Curves

NSA Suite B endorses elliptic curve cryptography:

ECDSA: the DSA signature scheme using group of points on an
elliptic curve

ECDH: Diffie-Hellman

ECMQV

elliptic curve based authenticated key agreement protocol
(authenticated version of Diffie-Hellman)

named after Menezes, Qu, Vanstone

dropped from Suite B, but used in many other standards and
applications (eg. BlackBerry)
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Elliptic Curve Cryptosystems ECMQV

Elliptic Curve Key Agreement (ECMQV)

Definition 2

A key establishment protocol provides two or more entities communicating
over an open network with a shared secret.

key transport: send key via public-key encryption

key agreement: Diffie-Hellman

Fundamental security goals:

1 Implicit key authentication (of B to A): A is sure the only person who
can construct the key is B.

2 Explicit key authentication (key confirmation): A is assured that B
has computed or can compute the key

Together, these provide explicit key authentication. To provide this to
both A and B requires three message exchanges.
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Elliptic Curve Cryptosystems ECMQV

Security Goals for Key Agreement

Other desirable attributes:

1 Forward secrecy: long-term private key being compromised does not
affect the security of previous session keys established by honest
entities.

2 Key-compromise impersonation resilience: if A’s private key becomes
compromised, no one can use it to impersonate other people to A

3 Unknown key-share resilience: an entity cannot be tricked into sharing
a key with someone to whom he doesn’t intend

The Station-to-station protocol is one example of key agreement with
explicit key authentication. Another is ECMQV, presented below.
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Elliptic Curve Cryptosystems ECMQV

ECMQV: System Parameters

Domain parameters D = (q,FR, S , a, b,P, n, h), where

q : size of the finite field Fq, representation FR

S : seed for the random number generator used to find the curve

a, b ∈ Fq : coefficients of the curve equation

P = (xP , yP) ∈ E (Fq) : base point of finite, prime order.

n : order of P (nP = O), h = |E (Fq)|/n (called the cofactor)

Key pairs (QA, dA), (QB , dB) with QA = dAP and QB = dBP

Key derivation function (KDF): outputs symmetric keys k1, k2 given a
point

Message authentication code (MAC)

Given a point R, define R to be the integer (x mod 2df /2e) + 2df /2e where
x is the integer representation of the x-coordinate of R and
f = blog2 nc+ 1 is the bitlength of n.
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Elliptic Curve Cryptosystems ECMQV

ECMQV Protocol

Goal: A and B establish a shared secret key with mutual entitiy
authentication

Protocol messages:

A→ B : A,RA

B → A : B,RB , tB = MACk1(2,B,A,RB ,RA)

A→ B : tA = MACk1(3,A,B,RA,RB)

Steps:

1 A selects kA ∈ [1, n − 1] at random, computes RA = kAP and sends
A,RA to B.
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Elliptic Curve Cryptosystems ECMQV

Step 2

B does the following:

1 Perform an embedded public key validation of RA, i.e., check that
RA 6= O, the coordinates of RA are properly-represented elements of
Fq, and that RA ∈ E (Fq).

2 Select kB ∈ [1, n − 1] at random and compute RB = kBP.

3 Compute sB = (kB + RBdB) mod n and ZB = hsB(RA + RAQA) and
verify that ZB 6= O.

4 (k1, k2) = KDF (xZB
), where xZB

is the x-coordinate of ZB .

5 Compute tB = MACk1(2,B,A,RB ,RA).

6 Send B,RB , tB to A.
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Elliptic Curve Cryptosystems ECMQV

Remaining Steps

A does the following:

1 Perform an embedded public key validation of RB .

2 Compute sA = (kA + RAdA) mod n and ZA = hsA(RB + RBQB) and
verify that ZA 6= O.

3 (k1, k2) = KDF (xZA
), where xZA

is the x-coordinate of ZA.

4 Compute t = MACk1(2,B,A,RB ,RA) and verify that t = tB .

5 Compute tA = MACk1(3,A,B,RA,RB) and send tA to B.

B computes t = MACk1(3,A,B,RA,RB) and verifies that t = tA.

The session key is k2.

Note 1

The strings “2” and “3” in the MAC inputs distinguish tags from A and B.
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Elliptic Curve Cryptosystems ECMQV

Why This Works

The protocol works if ZA = ZB .

A computes ZA = hsA(RB + RBQB)

B computes ZB = hsB(RA + RAQA).

Recall: RA = kAP, QA = dAP, and sA = kA + RAdA. Then

RA + RAQA = kAP + RAdAP = (kA + RAdA)P = sAP

Similarly, sBP = RB + RBQB .

Thus, we have ZA = hsAsBP = ZB .
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Elliptic Curve Cryptosystems ECMQV

Security of ECMQV

No proven results, but has the following properties:

1 sA mod n is an implicit signature of the ephemeral public key RA.
“Signature” in the sense that only A can compute sA, implicitly
verified because B uses sAP to compute ZB (thereby verifying the
signature once A and B have the same shared key). Similarly for
sB mod n, giving implicit key authentication to both parties.

2 Successful verification of tA and tB provides key confirmation (both
parties require shared secret Z to compute the MACs).

3 Session key k2 is different each time (ephemeral), gives forward
secrecy.

4 Provides “proof” if communications have been tampered with (MACs
don’t verify correctly).

5 Each party knows the identity of their partner, because IDs are
included in MACs.
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Elliptic Curve Cryptosystems ECMQV

Summary

Security of ECMQV still subject to debate:

some attacks, competition (HMQV)

Utility of elliptic curve cryptography widely accepted

used in practice for many applications (eg. Blackberry, BluRay, etc...)

Maps between curves (called isogenies) are the basis of a
quantum-resistant cryptosystem.

Huge field of mathematical study in their own right.

For more on elliptic curves and applications to cryptography, take CPSC
629!
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