Outline

CPSC/PMAT 669

Elliptic Curve Cryptography

Mike Jacobson
Department of Computer Science
University of CalgaryElliptic Curves

- Elliptic Curves over Finite Fields

Topic 9
Motivation \quad Elliptic Curves

Key Sizes for Elliptic Curve Cryptography

Recall: El Gamal PKC and DSA signatures are generic in the sense that they can work with any finite abelian group.

The most promising implementations of El Gamal and DSA signatures is to use for the group G the set of points on an elliptic curve defined over a finite field.

The corresponding discrete logarithm problem appears to be very difficult (best known algorithms have exponential complexity).

- can use smaller parameters than RSA for the same security level
- shorter keys, possibly faster protocols

NIST's Recommendations for security level bit sizes (SP 800-57 part 1):

Security level	80	112	128	192	256
Hash function size	160	224	256	384	512
Elliptic curve group size	$\mathbf{1 6 0}$	$\mathbf{2 2 4}$	$\mathbf{2 5 6}$	$\mathbf{3 8 4}$	$\mathbf{5 1 2}$
RSA modulus	1024	2048	3072	8192	15360

Elliptic Curve Cryptography was proposed in 1985 independently by N. Koblitz and V. Miller.

Elliptic Curves

An Example

Elliptic Curves

Geometry versus Algebra

Elliptic curves are geometric objects.
For cryptography, we need to be able to do algebra, so we need to perform arithmetic on points on elliptic curves.

- On \mathbb{Z}_{p}^{*}, the arithmetic operation was multiplication
- On an elliptic curve, the operation is addition of points on the curve
- Inverses in \mathbb{Z}_{p}^{*} are replaced by negatives of points
- Squaring in \mathbb{Z}_{p}^{*} is replaced by point doubling
- Exponentiation will be replaced by scalar multiplication:

$$
n P=\underbrace{P+P+\cdots+P}_{a \text { times }} \quad \text { for } n \in \mathbb{N}
$$

An elliptic curve is a curve with an equation

$$
y^{2}=x^{3}+A x+B
$$

for quantities A, B in a field K with $4 A^{3}+27 B^{2} \neq 0$.

- Equivalent to the polynomial $x^{3}+A x+B$ having three distinct roots.
- As a result, there is a unique tangent line to every point on the curve.

Elliptic curves make numerous appearances throughout math: in geometry, analysis, topology, number theory (e.g. proof of Fermat's Last Theorem), crypto, ...

The curve $y^{2}=x^{3}-5 x$ over \mathbb{R}

The curve $y^{2}=x^{3}-5 x$ over \mathbb{R}

Elliptic Curve Arithmetic: Negation

The negative of a point $P=(x, y)$ is its reflection on the x-axis:

$-(\bullet)=$?

Elliptic Curve Arithmetic: Negatives (cont'd)
Negative of $P=(x, y)$ is $-P=(x,-y)$.

$-(\bullet)=$

Elliptic Curves
Elliptic Curve Arithmetic: Addition

$\bullet+\bullet=$?

Intersections

Any line intersects an elliptic curve in exactly three points.

- The intersection may not be "visible" (e.g. for an elliptic curve over \mathbb{R}, we would need to draw a picture over \mathbb{C})
- For a vertical line, the third point of intersection is the "point at infinity" which acts like 0 .
- For a tangent line, the tangent point needs to be double-counted.

Addition of points is done according the "cord \& tangent law": any three collinear points on the elliptic curve sum to zero.

Hence the sum of two points is the negative of the third point of intersection:

$$
P+Q+R=0 \quad \Longrightarrow \quad P+Q=-R
$$

Elliptic Curve Arithmetic: Addition (cont'd)

$$
\bullet+\bullet+\bullet=0
$$

Elliptic Curve Arithmetic: Addition (cont'd)

$\bullet+\bullet+\bullet=0$

Mike Jacobson (University of Calgary)

Elliptic Curves
Elliptic Curve Arithmetic: Doubling (cont'd)

Elliptic Curve Arithmetic: Doubling

$2 \times$?

Mike Jacobson (University of Calgary)

Elliptic Curves
 Addition Formulas

Let

$$
P_{1}=\left(x_{1}, y_{1}\right), P_{2}=\left(x_{2}, y_{2}\right) \quad\left(P_{1} \neq 0, P_{2} \neq, P_{1} \neq P_{2}\right) .
$$

Then

$$
\begin{aligned}
-P_{1} & =\left(x_{1},-y_{1}\right) \\
P_{1}+P_{2} & =\left(\lambda^{2}-x_{1}-x_{2},-\lambda^{3}+\lambda\left(x_{1}+x_{2}\right)-\mu\right)
\end{aligned}
$$

where

$$
\lambda=\left\{\begin{array}{ll}
\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & \text { if } P_{1} \neq P_{2} \\
\frac{3 x_{1}^{2}+A}{2 y_{1}} & \text { if } P_{1}=P_{2}
\end{array} \quad \mu= \begin{cases}\frac{y_{1} x_{2}-y_{2} x_{1}}{x_{2}-x_{1}} & \text { if } P_{1} \neq P_{2} \\
\frac{-x_{1}^{3}+A x_{1}+2 B}{2 y_{1}} & \text { if } P_{1}=P_{2}\end{cases}\right.
$$

Properties of Point Addition

Elliptic Curves over Finite Fields

Let P, Q, R be arbitrary points on an elliptic curve. Then point addition satisfies the following properties:

- Closure: $P+Q$ is a point on the curve.
- Existence of an identity: adding the "point at infinity" to P leaves P unchanged.
- Existence of inverses: $-P$ is a point on the curve.
- Associativity: $(P+Q)+R=P+(Q+R)$.
- Commutativity: $P+Q=Q+P$.

Theorem 1

The points on an elliptic curve form a finite abelian group under point addition.

Which Finite Fields?

Elliptic curves over \mathbb{F}_{p} where p is a large prime admit efficient software implementations. The formulas are the same as above if $p>3$.

Example 1

Let $E: Y^{2}=X^{3}+X+1$. Then $P=(3,10)$ and $Q=(9,7)$ are both points in $E\left(\mathbb{F}_{23}\right)$. We have $P+Q=(17,20)$ and $2 P=(7,12)$.

Elliptic curves over $\operatorname{GF}\left(2^{n}\right)$ are also attractive because they admit efficient hardware implementations.

- slightly different formulas required

Consider $E\left(\mathbb{F}_{q}\right)$ where \mathbb{F}_{q} is the finite field of q elements.

- Then $\left|E\left(\mathbb{F}_{q}\right)\right|$ is finite, as there are only q possible values for each point coordinate.
- A theorem of Hasse states

$$
q+1-2 \sqrt{q} \leq\left|E\left(\mathbb{F}_{q}\right)\right| \leq q+1+2 \sqrt{q} .
$$

i.e., $\left|E\left(\mathbb{F}_{q}\right)\right|$ is roughly as large as q.

- Can compute $\left|E\left(\mathbb{F}_{q}\right)\right|$ in polynomial time (Schoof, Kedlaya, etc...). In practice, can handle q of several thousand digits.

The geometric analogue of point addition does not carry over to the finite field case, but the algebraic formulas still work.

- Thus, $E\left(\mathbb{F}_{q}\right)$ is a finite abelian group under point addition.

Elliptic Curve Discrete Logarithm Problem

Since $E\left(\mathbb{F}_{q}\right)$ is a finite abelian group under point addition, it can be used in any generic protocol like Diffie-Hellman or El Gamal.

- The additive variant of g^{x} is computing $x P$, which can also be done efficiently with the binary exponentiation algorithm.
- The corresponding discrete logarithm problem is to compute x given points P and $x P$.

Except for a few special cases, the best-known algorithms for solving the elliptic curve discrete logarithm problem are exponential in $\lg q$, namely $O(\sqrt{q})$.

- To achieve $80,112,128,192$, and 256 bit security, we choose q with $160,224,256,394$, or 512 bits, respectively.
- Significantly smaller than corresponding sizes requried for RSA or El Gamal over \mathbb{Z}_{p}^{*}

Elliptic Curves
 Elliptic Curves over Finite Fields

Hyperelliptic Curves

Examples of Cryptosystems Using Elliptic Curves

An equally secure setting for discrete log based crypto is that of genus 2 hyperelliptic curves: $\quad y^{2}=x^{5}+a x^{3}+b x^{2}+c x+d$. (Koblitz 1989)

- Arithmetic is conducted on pairs of points, with any three pairs of points lying on a cubic summing to 0 .
- More complicated, but can choose p of half size (e.g. 128 bits) for the same level of security.

Elliptic Curve Key Agreement (ECMQV)

Definition 2

A key establishment protocol provides two or more entities communicating over an open network with a shared secret.

- key transport: send key via public-key encryption
- key agreement: Diffie-Hellman

Fundamental security goals:

(1) Implicit key authentication (of B to A): A is sure the only person who can construct the key is B.
(2) Explicit key authentication (key confirmation): A is assured that B has computed or can compute the key
Together, these provide explicit key authentication. To provide this to both A and B requires three message exchanges.

NSA Suite B endorses elliptic curve cryptography:

- ECDSA: the DSA signature scheme using group of points on an elliptic curve
- ECDH: Diffie-Hellman

ECMQV

- elliptic curve based authenticated key agreement protocol (authenticated version of Diffie-Hellman)
- named after Menezes, Qu, Vanstone
- dropped from Suite B, but used in many other standards and applications (eg. BlackBerry)

Security Goals for Key Agreement

Other desirable attributes:
(1) Forward secrecy: long-term private key being compromised does not affect the security of previous session keys established by honest entities.
(2) Key-compromise impersonation resilience: if A 's private key becomes compromised, no one can use it to impersonate other people to A
(Unknown key-share resilience: an entity cannot be tricked into sharing a key with someone to whom he doesn't intend

The Station-to-station protocol is one example of key agreement with explicit key authentication. Another is ECMQV, presented below.

ECMQV Protocol

Domain parameters $D=(q, F R, S, a, b, P, n, h)$, where

- q : size of the finite field \mathbb{F}_{q}, representation $F R$
- S : seed for the random number generator used to find the curve
- $a, b \in \mathbb{F}_{q}$: coefficients of the curve equation
- $P=\left(x_{P}, y_{P}\right) \in E\left(\mathbb{F}_{q}\right)$: base point of finite, prime order.
- n : order of $P(n P=O), h=\left|E\left(\mathbb{F}_{q}\right)\right| / n$ (called the cofactor)

Key pairs $\left(Q_{A}, d_{A}\right),\left(Q_{B}, d_{B}\right)$ with $Q_{A}=d_{A} P$ and $Q_{B}=d_{B} P$
Key derivation function (KDF): outputs symmetric keys k_{1}, k_{2} given a point
Message authentication code (MAC)
Given a point R, define \bar{R} to be the integer $\left(\bar{x} \bmod 2^{[f / 2\rceil}\right)+2^{[f / 2\rceil}$ where \bar{x} is the integer representation of the x-coordinate of R and
$f=\left\lfloor\log _{2} n\right\rfloor+1$ is the bitlength of n.

Step 2

B does the following:

(1) Perform an embedded public key validation of R_{A}, i.e., check that $R_{A} \neq O$, the coordinates of R_{A} are properly-represented elements of \mathbb{F}_{q}, and that $R_{A} \in E\left(\mathbb{F}_{q}\right)$.
(2) Select $k_{B} \in[1, n-1]$ at random and compute $R_{B}=k_{B} P$.
(3) Compute $s_{B}=\left(k_{B}+\overline{R_{B}} d_{B}\right) \bmod n$ and $Z_{B}=h s_{B}\left(R_{A}+\overline{R_{A}} Q_{A}\right)$ and verify that $Z_{B} \neq O$.
(0) $\left(k_{1}, k_{2}\right)=\operatorname{KDF}\left(x_{Z_{B}}\right)$, where $x_{Z_{B}}$ is the x-coordinate of Z_{B}.
(0) Compute $t_{B}=M A C_{k_{1}}\left(2, B, A, R_{B}, R_{A}\right)$.
(0) Send B, R_{B}, t_{B} to A.

Goal: A and B establish a shared secret key with mutual entitiy authentication

Protocol messages:

- $A \rightarrow B: A, R_{A}$
- $B \rightarrow A: B, R_{B}, t_{B}=M A C_{k_{1}}\left(2, B, A, R_{B}, R_{A}\right)$
- $A \rightarrow B: t_{A}=M A C_{k_{1}}\left(3, A, B, R_{A}, R_{B}\right)$

Steps:
(1) A selects $k_{A} \in[1, n-1]$ at random, computes $R_{A}=k_{A} P$ and sends A, R_{A} to B.

Remaining Steps

A does the following:
(1) Perform an embedded public key validation of R_{B}.
(2) Compute $s_{A}=\left(k_{A}+\overline{R_{A}} d_{A}\right) \bmod n$ and $Z_{A}=h s_{A}\left(R_{B}+\overline{R_{B}} Q_{B}\right)$ and verify that $Z_{A} \neq O$.
(0) $\left(k_{1}, k_{2}\right)=\operatorname{KDF}\left(x_{Z_{A}}\right)$, where $x_{Z_{A}}$ is the x-coordinate of Z_{A}.
(9) Compute $t=M A C_{k_{1}}\left(2, B, A, R_{B}, R_{A}\right)$ and verify that $t=t_{B}$.
(0) Compute $t_{A}=M A C_{k_{1}}\left(3, A, B, R_{A}, R_{B}\right)$ and send t_{A} to B.
B computes $t=M A C_{k_{1}}\left(3, A, B, R_{A}, R_{B}\right)$ and verifies that $t=t_{A}$.
The session key is k_{2}.

Note 1

The strings " 2 " and " 3 " in the MAC inputs distinguish tags from A and B

Why This Works

Security of ECMQV

The protocol works if $Z_{A}=Z_{B}$.

- A computes $Z_{A}=h s_{A}\left(R_{B}+\overline{R_{B}} Q_{B}\right)$
- B computes $Z_{B}=h s_{B}\left(R_{A}+\overline{R_{A}} Q_{A}\right)$.

Recall: $R_{A}=k_{A} P, Q_{A}=d_{A} P$, and $s_{A}=k_{A}+\overline{R_{A}} d_{A}$. Then

$$
R_{A}+\overline{R_{A}} Q_{A}=k_{A} P+\overline{R_{A}} d_{A} P=\left(k_{A}+\overline{R_{A}} d_{A}\right) P=s_{A} P
$$

Similarly, $s_{B} P=R_{B}+\overline{R_{B}} Q_{B}$.
Thus, we have $Z_{A}=h s_{A} s_{B} P=Z_{B}$.

No proven results, but has the following properties:
(1) $s_{A} \bmod n$ is an implicit signature of the ephemeral public key R_{A}. "Signature" in the sense that only A can compute s_{A}, implicitly verified because B uses $s_{A} P$ to compute Z_{B} (thereby verifying the signature once A and B have the same shared key). Similarly for $s_{B} \bmod n$, giving implicit key authentication to both parties.
(3) Successful verification of t_{A} and t_{B} provides key confirmation (both parties require shared secret Z to compute the MACs).
(3) Session key k_{2} is different each time (ephemeral), gives forward secrecy.
(Provides "proof" if communications have been tampered with (MACs don't verify correctly).
(0) Each party knows the identity of their partner, because IDs are included in MACs.

Summary

Security of ECMQV still subject to debate:

- some attacks, competition (HMQV)

Utility of elliptic curve cryptography widely accepted

- used in practice for many applications (eg. Blackberry, BluRay, etc...)
- Maps between curves (called isogenies) are the basis of a quantum-resistant cryptosystem.

Huge field of mathematical study in their own right.
For more on elliptic curves and applications to cryptography, take CPSC 629 !
Summary
Security of ECMQV still subject to debate:

- some attacks, competition (HMQV)
Utility of elliptic curve Crypeosystens ECMQV
- used in practice for many applications (eg. Blackberry, BluRay, etc...)
- Maps between curves (called isogenies) are the basis of a

