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Abstract. The xedni calculus attack on the elliptic curve discrete logarithm problem (ECDLP) involves lifting
points from the finite field", to the rational number® and then constructing an elliptic curve od@that passes
through them. If the lifted points are linearly dependent, then the ECDLP is solved. Our purpose is to analyze
the practicality of this algorithm. We find that asymptotically the algorithm is virtually certain to fail, because of
an absolute bound on the size of the coefficients of a relation satisfied by the lifted points. Moreover, even for
smaller values op experiments show that the odds against finding a suitable lifting are prohibitively high.
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1. Introduction

At the Second Elliptic Curve Cryptography Workshop (University of Waterloo, September
14-16, 1998), Joseph Silverman announced a new attack on the elliptic curve discrete
logarithm problem (ECDLP) over a prime fiel}. He called his method “xedni calculus”
because it “stands index calculus on its helad.”

Recall that the ECDLP is the problem given two poiftsQ on an elliptic curve over
Fp, of finding an integemw such thatQ = wP. Very briefly, Silverman’s idea was to
taker random linear combinations of the two poiRs Q, where 2< r < 9 (most likely
r = 4,5 or 6), and then consider poin with rational coordinates that reduce modglo
to these points and elliptic curve& over the rational number fiel@ that pass through
all of the B and reduce mod to the original curve oveF,. If those “lifted” points
P, are linearly dependent, then the ECDLP is solved. The probability of dependence is
almost certainly very low, but Silverman had an idea of how to increase this probability,
possibly by a dramatic amount. Namely, he imposes onRth@nd E a set of auxiliary
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conditions moduld for several small primels These conditions guarantee that the elliptic
curves will have fewer-than-expected points moduland this presumably decreases the
likelihood that ther Q-points P will be independent. (More details will be given in 83
below.)

Silverman’s algorithm, which had been circulating in manuscript form for about two weeks
before the conference, created a stir for several reasons. In the first place, this was the first
time in about seven years that a serious attack had been proposed on an important class
of elliptic curve cryptosystems. In the second place, Silverman’s approach involved some
sophisticated ideas of arithmetic algebraic geometry—most notably, the heuristics of the
Birch—Swinnerton-Dyer Conjecture—that had never before had any practical application.
In the third place, because of the subtlety of the mathematics being used, even people
who had computational experience with elliptic curves were completely baffled in their
initial attempts to estimate the running time of the xedni calculus. No one, for example,
could say with absolute certainty that it would not turn out to give a polynomial-time
algorithm!

If it were practical, the xedni calculus would not only break elliptic curve cryptosystems
(ECC). As Koblitz showed, it can easily be modified to attack (1) the Digital Signature
Standard (i.e., the discrete logarithm problem in the multiplicative group,pfand (2)

RSA (i.e., the integer factorization problem). Thus, essentially all public-key cryptography
that’s in widespread use in the real world was threatened.

Of course, most people, including Silverman himself, thought that it was highly unlikely
that the algorithm would turn out to be so efficient that it would render ECC, DSS, and RSA
insecure. However, it is not enough to have a “gut feeling” about such matters. One needs
to find solid mathematical arguments that enable one to evaluate the efficiency of the xedni
calculus. That is the purpose of this paper.

2. Background
2.1. The Hasse—Weil.-Function

Let E be an elliptic curve defined over the figdof rational numbers, and 1&f =1 +1—a
denote the number of points on the reduction of E modfidcor eachl we have the
associated quadratic polynomiakla T +1T? = (1 — ¢ T)(1 — & T) whose value at
T = 1is N;; this polynomial is the numerator of the zeta-functiortofnod|. By Hasse’s
Theoremyy is a complex number of absolute valué.

The Hasse—Well -function of the curvek is defined by analogy with the Riemann zeta-
function £(s) = Mprimes ﬁ Namely, we take. (E, s) to be the product ovdr of the
following “Euler factor”:

1 _ 1
QA—a-1"5Q—a 15 1—a- I=S+].1-%"
It is easy to verify that the infinite product converges fo&e> 3/2 (just as the Euler

product for the Riemann zeta-function converges faisiRe- 1). By the “critical value” we
mean the value of (E, s) ats = 1. Just as one has to analytically continue the Riemann
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zeta-function a distance/2 to the left in order to react the “critical line,” similarly one
has to analytically continuk (E, s) a distance 22 to the left in order to reach the critical
value.

However, analytic continuation af(E, s) is not nearly so simple as in the case;¢$);
and, in fact, it has been proven only in the case wkeis “modular” in the following
sense. If we expand the Euler product, we can wWrig, s) in the form)_ a, - n=5.3 We
now introduce a new complex variatidgand in each term we replace® by "2, The
result is a Fourier serie¥’ a,e"'"? that converges in the complex upper half-plane. We
say thatE is “modular” if this Fourier series is a modular form, that is, if it satisfies a
simple transformation rule whenis replaced byaz+ b)/(cz+ d) for any integer matrix
¢ g) of determinant 1 withc = 0 (modN). HereN is the “conductor” of the curvé;
it is closely related to the curve’s discriminadt* In order to know unconditionally that
analytic continuation is possible and the critical valu&, 1) is defined, we need the curve
E to be modular.

2.2. The Taniyama Conjecture

The Taniyama Conjecture is the assertion that all elliptic cuBvegerQ are modular. One
reason for its importance is that it guarantees that the Hasse+tWiefiction of E can be
analytically continued, and its behaviour neat 1 can be studied.

It is for a different reason that most people have heard of this conjecture, namely, its
connectionto Fermat's Last Theorem. In 1985 Gerhard Frey suggestedthatlP = CP
were a counterexample to Fermat’s Last Theorem, then the elliptic curve

Y2 = X(X — AP)(X + BP)
would have a very surprising property. Its discriminant would be
16(APBP(AP + BP))? = 16(ABD)?P,

so every prime factor in this discriminant would occur to a very large power. Frey thought
that it would then have to violate the Taniyama Conjecture. K. Ribet was able to prove
that Frey’s hunch was correct [24]; then, working intensively for many year, A. Wiles
(partly in joint work with R. Taylor) [37, 36] proved that no such curve can violate the
Taniyama Conjecture, and hence there can be no counterexample to Fermat’s Last Theo-
rem.

Wile proved the Taniyama Conjecture for a broad class of curves—the “semi-stable” ones,
i.e., the ones whose conductlris squarefree—but not for all curves. What he proved
was enough for Fermat’s Last Theorem. The full conjecture was subsequently proven by
Breuil, Conrad, Diamond, and Taylor.

2.3. The Conjecture of Birch and Swinnerton-Dyer

As before, lete be an elliptic curve defined ové), and letN, denote the number of mdd-
points. Asl increases, suppose that we want to get an idea of whether & ehds to
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be toward the right end of the Hasse intervak[1 — 2/1, | + 1 + 2/1], that is, whether
or not there tend to be more-than average points on the curve. We might expect that if
our original curve ovef) has infinitely many points—that is, if its ramkis positive—then
these rational points would be a plentiful source of nquabints, and\;, would tend to be
large; whereas if = 0, thenN, would straddle both sides 6f+ 1 equally. This is the
intuitive idea of the (weak) Birch—Swinnerton-Dyer Conjecture [1, 2, 3].

To measure the relative sizef andl asl varies, let us form the produff, I\Il_| Because
N, =1 — o + 1, we can write this as

| 1
1|_[| —O[|+1_1|_[1—Ol|-|_1+| =2

which is formally equal to the value & = 1 of the Euler product folL (E,s). We
say “formally,” because that product diverges, and the critical value is found by analytic
continuation, not by evaluating an infinite product.

Nevertheless, let us suppose that it makes sense to talk about this infinite product as
if it converged. One might expect that it would converge to zerbljithas a tendency
to be significantly larger thah and would converge to a nonzero valueNif is equally
likely to be above or below. And, indeed, the Birch—Swinnerton-Dyer Conjecture states
that L(E, s) vanishes as = 1 if and only if the rankr of the group ofE overQ is
greater than zero, and that, moreover, its order of vanishisg=atl is equal tor. The
conjecture further says that the leading coefficient in the Taylor expans®nr=al can
be expressed in terms of certain number-theoretic invariants. ofStarting in 1977, a
series of important partial results have been proved in support of this fundamental con-
jecture (see [5, 6, 25]), but in its most general form it remains a very difficult unsolved
problem.

2.4. Heights

Let E be an elliptic curve (in Weierstrass form) over the fi@df rational numbers. Let
P = (x,y) be a rational point orkE (not the point at infinity). Thdogarithmic height
of P is defined by the formula(P) = logmaxal, |b|), wherex = a/b is written as a
fraction in lowest terms. The logarithmic height is closely related to the point’s size in the
computer-science sense (i.e., its bit-length).

It can be shown that, iP is a point of infinite order, theh(n P) growsquadratically
with n. That is, if you write out a list of the multiples &, one on each line, the lengths of
the lines will increase proportionately i3 and so form a parabola. (For a picture of this
in the case of the elliptic curvé? + Y = X3 — X and the pointP = (0, 0), see page 143
of [11].)

The logarithmic height, which has a roughly quadratic behavior, can be modified (this was
done by Neron [23] and later simplified by Tate) in such a way that the resuttamgpnical
logarithmic heighth(P) is precisely a quadratic form. Namely, define

1

h(P) = 5

o1
nILmC>o ?h(n P).
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The values oh(P) and %h(P) are close to one another—in fact, it can be shown (see
p. 229 of [29]) that their difference is bounded by a constant depending ori-ebut it
is the functiorh rather tharh that has the nicer properties.

Suppose that the groug(Q) has rankr, i.e., the quotient groufe (Q)/E(Q)ors IS
isomorphic toZ'. Let Py, ..., P. be a set of generators. The formula

1. A N
(P.Q) = E(h(P + Q) —h(P) —h(Q))

defines a positive inner product on thalimensional real vector spadé obtained from
E(Q)/E(Q)wrsby formally allowing theP, to have real (rather than justinteger) coefficients.
This vector space can also be defined using the tensor product notdtienE (Q) ® R.
Note thatE(Q)/E (Q)wrs is a full lattice inV.

Theregulatorof E is defined as follows:

R =det(R, Pj)1x<i j<r-

Itis the square of the volume of a fundamental parallelepiped of the |&1@8/ E(Q)tors

with respect to our inner product. The real numbBeis an important constant attached

to the elliptic curve. In the Birch—Swinnerton-Dyer Conjecture, it appears as one of the
factors in the first non-zero Taylor coefficient of the expansioh @&, s) ats = 1.

3.  Summary of the Algorithm
3.1. Simplified Version

We want to find an integap such thatQ = wP in E(Fy).

Working in projective coordinates, we choose two poendQ with integer coordinates
whose residues modulp are our points, Q € E(F,). We also choose an elliptic curve
E(Q) that passes througﬁ andQ and that reduces modufoto the curveE (Fp).

Now suppose tha® andQ turn out to be dependent E(Q), that is,

NP +nQ = O,
in which casen; andn, can easily be found. If that happens, working modplae get
Ng+nw=0

modulo the order oP in E(Fp); from this we can easily find.
However, in general the probability th& and Q are dependent is very, very small.
Silverman’sideaisto increase this probability by imposing some conditions of the following

type:
HEF) ~ 1 +1-2/1

—that is, the reduction moduloof E(Q) has relatively few points for all primdsLg <
| < L;(whereLo~ 7, L; ~ 100).



46 JACOBSON ET AL.

This idea was suggested by J.F. Mestre’s success in obtaining curgghef than
expected rank by imposing conditions in thygpositedirection, i.e.,

HEF) ~ | + 1+ 2V1.

Both strategies (for obtaining either higher-than-expected or lower-than-expected rank)
are based on the heuristic argument for the conjecture of Birch and Swinnerton-Dyer (see
Section 2.3), which says that the rankixfQ) is equal to the order of vanishing bi E, s)
ats = 1. Mestre’'s method is to force the first several terms in the formal infinite product
for L(E, 1) to be as small as possible, whereas Silverman wants them to be as large as
possible.

3.2. The Algorithm
We now describe the steps in the xedni algorithm [33].

Step 1. Choose an integerwith 2 <r < 9 (most likely 4<r < 6), and integeré o ~ 7
andL; < 100. Set

M= J]

| primg Lo<l<L;

Also, decide whether you will be working with elliptic curves in general cubic form or
in Weierstrass form. In the first case, for anyuple of projective point® = (X, Y;, Z;)
over a field, letB(Py, ..., P;) denote thdér x 10)-matrix whosed -th row is

(X2 XY, XiY2 Y2 X2Zi XiYZi Y,Z? Y,Z2 Z3).

Then the points lie on a given cubic curve with coefficienksi = 1, ..., 10, if and only
if the column-vectoi is in the kernel of the matriB(Py, ..., P). If, on the other hand,
the elliptic curve is given in the Weierstrass férm

aY?Z + ayXY Z+ agY 2% = a) X3 + apX?Z + ay X 2% + as 23,
then we takeB(P4, ..., P,) to be the { x 7)-matrix whosé -th row is
(Y2Zy XiNZi Y,Z2 X3 X?Zi X Z? Z}).

Inthis case the points lie on the curve if and only if the vect@p a; a3 —a; —ay —au —ag)T
is in the kernel oB(Py, ..., P).

Step 2. For eacH|M, choose points R ; in the projective plane ovdf, such that the
matrix B(R 1, ..., B ) has rank . Let Py ; denote a point modul that reduces t®
modulol for eachl |[M; such a point can be found by the Chinese Remainder Theorem. If
r > 4 and you’re working with the general form of a cubic (rather than Weierstrass form),
for convenience and slightly greater efficiency choose the first four points ¢b, 6e0),

(0, 1,0), (0,0, 1), and(1, 1, 1).
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Also choose a modM coefficient vectofup 1, - . . , Um.10) (OF, if you're using Weierstrass
form, (am 0, am.1, am 3, —a;\,,’o, —awm.2, —am.4, —am ¢)) thatis in the kernel of thB-matrix
for eachl|[M. Choose the coefficient vector so that for elid# the resulting cubic curve
is an elliptic curve (i.e., the discriminant is nonzero) with the fewest posBjbbmints:

N = #E@) =1 +1—[2V1],

whichisthe smallestintegerinthe Hasse interval. This equality is called the “reverse-Mestre
condition” atl.

Remark 1. In some circumstances it might be better to allow a weaker reverse-Mestre
condition, and instead require only that

N =#E@F) =1 + 14 ¢ — [2V1],
wheres = 1 or 2.

Remark 2. Note that the condition thd have rank implies that theR ; must be distinct
points, and henc®l, = #E(IF|) > r. Thus,Lo must be chosen large enough so that this
inequality does not contradict the (weak) reverse-Mestre condition. For example, 4f

or 5, then one can choosg = 7.

Remark 3.When constructing th& ; and coefficient vectors for the different small primes
I, some care has to be taken so as not to inadvertently cause the lifted points in Step 6
below to automatically be independent. In cases wkeand N, have a common factat,
there has to be a certain compatibility between the images d# thia the quotient group
E(F))/tE(F,) and the images d®; in E(F}) /T E(F)).

To illustrate in a simple situation, let us take= 2 and suppose thatl;3 = 7 and
N3; = 21 in accordance with the reverse-Mestre conditions. Suppos@ifiat= aPis1
andPs; >, = bPs1 1, wherea andb are integers modulo 7 and 21, respectively. (Here we are
supposing thaP;3 1 is not the point at infinity, andPsy ; is not a point of order 3.) Unless
a = b (mod 7),the lifted pointsP; and P, are forced to be independent. To see this, suppose
that we had a nontrivial relation of the formP; + n, P, = O. Since our lifted curve will
almost certainly have no torsion points (in particular, no points of order 7), we may suppose
that 7 does not divide bothy andn;. If we reduce this relation modulo 13 and 31, we obtain
(N1 + nya) P13,1 = 0 and(n; + nyb) P3l,1 = 0. Hencen; + n,a = ny + nyb = 0 (mod 7),
and soa = b (mod 7).

Remark 4. The reason for requiring that tigmatrix have rank for eachl M is that this
is precisely the condition that is needed in order to ensure that one can find coefficients for
an elliptic curve ovefQ that both passes through the lifted points and reduces modulo the
primesl and p to the curvesE(F)) (for I|M) and E(Fp) that we already have (see Step 7
below). This is proved in Appendix B of [33]. Here we shall motivate the naokndition
for the B-matrix by giving an example in a simpler setting.

Suppose that = 2, and we're working with straight lines in the projective plane, rather

X1 Yy Zl>. Letl = 3. Suppose that

than elliptic curves, so that thB-matrix is just
X2 Yo Z3
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we have ignored the rank-condition and oveiffs have chosen point®;; = (1,1, 1)
and P;, = (2,2, 2) and the straight lineX — Y = 0. Suppose that we have lifted the
points toQ as follows: P; = (1,1, 1), P, = (2,5, —1). We now want to find a lifted line
(1+3a)X — (14 3b)Y 4+ 3cZ = 0 that reduces tX — Y = 0 modulo 3 and that passes
throughP; andP,. A simple calculation shows that this is impossible.

Step 3. Let P, Q € E(IFp) be the points in the discrete log problem; that@s= w P for
some unknown integer. Choosa random integer linear combinations of the two points

P, Q:
Poi =SQ—tP e E(F).

Our entire purpose in the algorithm is to find a linear dependency amorfgihe
NiPp1+---+n Py, =0.

If we succeed, then we immediately obtain the following congruence modulo the order of
the pointP:

NS+ -+ s)w = (Nity + - - - + net;) mod ord P).

From this we can almost certainly solve for(recall that in cryptographic applications the
order of P is usually a large prime).

Step 4. If r > 4, and if you want to look for a lifted elliptic curve in general cubic
form (so that you have more coefficients to work with), then make a linear change of
variables in the projective plane ogs so that the first four points becong 1 = (1, 0, 0),
Pp2=1(0,1,0), Pp3=1(0,0,1), Pysa = (1,1, 1). Inthat case we lat,;,i =1,..., 10,
denote the coefficients of the resulting equationEgF ).

Step 5. Use the Chinese Remainder Theorem to find coefficigntsoduloM p that reduce
to up; modulop and touy ; moduloM, i =1,...,10. (Do the analogous thing with the
g coefficients if you are working in Weierstrass form.)

Step 6. Lift the r points to the projective plane over the rational numbers. That is, for
i =1,...,r choose point® = (X, Y;, Z;) with integer coordinates that reduceRg,
modulo p and toPy ; moduloM. If r > 4 and you are working with the general form of

a cubic, then take the first four points to Be = (1,0, 0), P, = (0, 1, 0), P; = (0,0, 1),
P,=(1,11).

Step 7. Using ther pointsP, from Step 6, form the matriB(Py, ..., P). Find an integer
vector = (uy, . .., Uip) such thaBiu = 0 andu; = u; (modMp) (or an analogous vector
of a’s if you've been working with curves in Weierstrass form). The rardendition on
the mod} B-matrices ensure that we can do this. Try to fingb that thay; are as small as
possible.
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Step 8. If you've been working with the general equation of a cubic, make a linear change
of variables to bring it into Weierstrass form.

Steps 9-10 (optional). Modify the solutiond in Step 7 by adding or subtracting vectors
of the formM pu, where the vectors are chosen from a basis of solutionsBd = 0 that

have small coordinates. Choose a new solutisuch that the discriminant of the curve
with coefficientsu, . .., Ujg is as small as possible. (Go through the analogous procedure
with theg; if you've been working with curves in Weierstrass form).

Also, letL be a constant of order about 200. For each curve compute the sum

logl
> an
I<L,IyM
If this sum is smaller than a pre-determined quantity (that is arrived at experimentally),
discard the curve and start over again with Step 2 or Step 3. Otherwise, continue to Step 11.
Step 10 is based on an analytic formula for the rank of a modular curve that was proved
by Mestre [20]. (Notice that his formula can be used because of the Taniyama Conjecture,
which says that all elliptic curves ov€r are modular.) In Mestre’s formula the above sum
appears as a crucial term. Heuristically, it is plausible that the more negative this sum is,
the more likely the curve is to have large rank. Since we want smaller-than-expected rank,
we might want to throw out curves for which the sum is highly negative.

Step 11. Finally, test the points for dependence. There are at least two efficient methods
of doing this (see [33]). If they are independent, return to Step 2 or Step 3. If they are
dependent, it is not hard to find the coefficients of a relation. As explained in Step 3, it
is then very easy to find the discrete logaritim This completes the description of the
algorithm.

4. Asymptotic Failure of the Algorithm
The purpose of this section is to prove

THEOREM4.1 Under certain plausible assumptions (see the lemma below), there exists an
absolute constant &such that the probability of success of the xedni algorithm in finding
a discrete logarithm on an elliptic curve ovEy is less than @/ p.

UnfortunatelyCy is rather large, so this result does not immediately resolve the question
of practicality of the algorithm. We address that question in the next section.

Recall the notion of the canonical logarithmic heigitP) (see §2.4). Given an elliptic
curve E overQ having infinitely many rational points, let denote the minimum di(P)
for all nontorsion point$ € E(Q). Let D denote the discriminant &. Then a conjecture
of Lang (see p. 92 of [12] or p. 233 of [29]) states that there exists a positive absolute
constantCs such thatm > Czlog|D|. This conjecture was proved for a large class of
curves in [27, 8], but it has not yet been proved unconditionally for all curves@ver
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algorithm, where D is the discriminant of the lifted curve,afe the lifted pointsh is the
canonical logarithmic height, and {s a positive absolute constahhen, under Lang’s
conjecture, if the lifted points are dependent, then they satisfy a nontrivial relation with
coefficients bounded from above by an absolute constant C

Proof. Following [34], we estimate the number of points BfQ)—more precisely,
the number of points in the subgroliy spanned by the lifted pointgy, ..., P.—whose
canonical logarithmic height is bounded by a cons&ntSuppose that th& are inde-
pendent, and let” < r — 1 denote the rank oft’. Let T’ denote the number of torsion
points inE’. (In practice, almost certainly’ = 1; and by a famous theorem of Mazur
[16] alwaysT’ < 16.) LetV' = E’ ® R, and letR’ denote the regulator dE’, i.e.,
R = det(P/, P)i<i,j<r, WherePj, ..., P, are a basis foE’/E{,.. Finally, we define
N(B) =#P ¢ E': h(P) < B}.

To estimateN (B), one uses standard results from the geometry of numbers. According
to Theorem 7.4 of Chapter 5 of [13],

Voail(r') /o _1y/2
N(B)=T——=-B"/2+ O(B" /3,
VR
whereVpa(r’) is the volume of the’-dimensional unit ball:
r’ Vban(r’)
1 2
2 7 =314...
3 4m=418...
4 % 2=493...
8
5 Enz =526---
6 ir3=516--
7 Bpd=472...

105
1_4 _
8 Axt=405. ..

It follows from Corollary 7.8 of Chapter 5 of [13] that
1 r'(r’'=1)
=(35)

where, as beforan denotes the smallest gositive valuehodn E(Q) (actually, we could
replacem by the smallest positive value dfon E’). If we combine these relations and
denote

—rr-1,2
3
c(r) = Vpai(r) (%—) ,
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we obtain
B r'/2
N(B) < Tc(r’) <E) + O(B" V72,

Now let M denote the maximum (ﬁ‘(R), i=1,...,r. Since\[ﬁ is a metric, the height
of any integer linear combination of tH& with coefficientsn; bounded by%Cz (whereC,
will be chosen later) is bounded as follows:

A r 2 r\2 2

AP+ +1R) < (5CVM) = (3) Cim.
If we substituteB = (3r)2CZM in our inequality forN(B), we find that the number of
points that)_ n; P can be, i.e., the number of points that satisfy the above inequality for
the height, is less than

Ter') (%)2 Cy (%)f'/Z.

But the number of linear combinatiods n; P with |n;| < %Cz is very close taCy,. If

, r')2
o= o (5) o ()

then there must be two different linear combinations that are equal, and so the Roints
satisfy a nontrivial linear relation with coefficients boundeddy
We now use the assumptions in the lemma. By Lang’s conjeature C3log|D|. Since
we also assumed that [¢B| > C;.M for some positive absolute const&yt, we have
M 1

— <

m C1C3'

Dividing the previous inequality through lﬁfz/, and using the fact that <r — 1, we find
that it suffices to have

r-1
CozTor -1 (5)  (€CuCo V2

SinceT < 16 and there are only finitely many possibilities fomamely, 2< r < 9, this
is an absolute constant. The lemma is proved. [ |

We now show how the theorem follows from the lemma. The point is that any relation
among the lifted point® can be reduced moduloto get a relation with the same coeffi-
cients among the originalpointsP, ; that were constructed at random in Step 3. However,
it is extremely unlikely that random points orE(Fp) will satisfy a linear relation with
coefficients less than a constant bound. In fact, using a pigeon-hole argument, one can show
that the smallest value of méx | that is likely to occur for the coefficients in a relation is
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of orderO(p*"). If the pointsP,; in Step 3 do not satisfy a relation with coefficients less
than the bound in the lemma, then no amount of work with Mestre conditions is going to
enable one to lift them to dependent points.

To make the argument more precise, consider the maprfrtuples of integers less than
C; in absolute value t& (Fp) given by(ny, ..., n,) = niPLp+---+n. B p. Theimage
is a set of~ (2C,)" randomly distributed points. The probability that the image contains 0
is approximately2C,)" / p. This proves the theorem witBy = (2C,)".

Unfortunately, the certain failure of the algorithm for large prinpedoes not rule out its
practicality forp of an “intermediate” size, such @s~ 10°°. After examining about 10000
curves, Silverman [27] was able to bound the constarih Lang’s conjecture as follows:

Cs < (200018 That circumstance alone contributes a factor of at least 2006 to the
constantC, in the lemma, and at least 2000 0/2 to the constan€, in Theorem 4.1. In
any case, it is now clear that Silverman was correct to choase2. If r were equal to

2 (as in the “simplified version” in §3.1), theZy, could be chosen much smaller, and our
theorem would apply tg of more moderate size.

This situation is very unusual. We know, subject to various reasonable conjectures, that
for sufficiently largep the xedni algorithm must be repeated at le@sgp) times (with
different choices of points in Step 3) in order to find a discrete logarithm. In other words,
asymptotically it is far slower than square-root attacks. However, because of the constants
involved, this result does not necessarily imply that the algorithm is inefficierp fiotthe
range that arises in practical cryptography.

4.1. Estimate of the Constant in Theorem 4.1

In order to get a very rough estimate for the cons@yin Theorem 4.1, we shall make the
following assumptions:

e The constan€Cs; in Lang’s conjecture is no less thanlD of the upper bound in [27],
i.e.,Csz > 0.00005.

e Forr =2 34,5, 6, one uses the Weierstrass form of the equation of the elliptic curve
with 7 variable coefficients. We suppose that the ratio of length of the coefficients to
length of the coordinates of thepoints is given by a formula derived from Siegel’s
Lemma, as in Appendix J of [33], namely;43r /(7 —r). We further suppose that the
length of the discriminant is 12 times the length of the coefficients.

e Forr = 7,8,9, one uses the general equation of a cubic, which has 10 variable
coefficients. We suppose that the ratio of lengths of coefficients to coordinates is now
1+3r/(10—r) (see Appendix J of [33]). In accordance with computations of Silverman
(see Appendix C of [33]), we also assume that the length of the discriminant is 110
times the length of the coefficients.

e The curves ovef) have no nontrivial torsion points, as one expects to happen in the
vast majority of cases.
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We now use the bound in the proof of Theorem 4.1:

; 2r(r —2)(r-3)/2
Co=T

= mrr(ril)(vbau(r — 1)) (C41Cg) 1112

whereT, C1, andC; are determined according to the four assumptions aboveT 2.1,
C3 =0.00005andC; = 12(1+3R/(7— R)) or 1101+ 3r/(10—r))forr =2,3,4,5,6
andr =7, 8, 9, respectively. Here is the result:

very rough value foCq

.
2 10
3 102
4 1023
5 10°8
6
7
8

1004
10
10%
9 10400

We conclude that fop ~ 10°°, Theorem 4.1 rules out the use of the algorithm with 5,
but not necessarily with = 6, 7, 8, 9. Nevertheless, in our experimental work, where the
primes were much smaller, we took= 2, 3, 4 in order to investigate the probability of
dependence, the effect of reverse-Mestre conditions, and other issues.

Note that wherp ~ 10°° we can expect to be working with elliptic curves o@wvhose
discriminants have at least 10000 decimal digits when6 and 150000 digits when= 9.
This obviously casts doubt on the feasibility of the computations in the algorithm. We shall
explore the practicality question in more detail in the next section.

Remark 5. Our estimate foiC; might be too high, because sometimes one can obtain
smaller coefficients and discriminants using lattice-basis reduction and other methods. On
the other hand, the value we are using@aris almost certainly too low; so it is reasonable

to hope that our value for the produ€tCs is about right.

5. Empirical Analysis in the Practical Range

To get a practical estimate of the probability of success of the xedni algorithm, we did
several experiments, including an implementation of the algorithm itself. All experiments
were carried out using the computer algebra systems LiDIA [14] and SIMATH [38]. We
began with a couple of preliminary computations. The purpose of this was to obtain some
insight into which parameters have an impact on the probability of dependence. Our strategy
and the size of parameters were chosen with the aim of producing a significant number of
dependencies. We tried to keep the size of the curve coefficients, and hence the size of the
discriminant, as small as possible. We worked witl 2, 3 and 4 points through which

the curve was made to pass, and we did not impose any reverse-Mestre conditions. The data
obtained through these experiments already suggested that most likely the xedni algorithm



54 JACOBSON ET AL.

has a negligible probability of success. However, to be more confident of this statement,
we implemented the algorithm. It turned out that the probability of success was small even
for 8-bit primes.

5.1. A First Approach
5.1.1. The Experiment

For each value = 2, 3, 4, 200000 curves were generated as follows. Hiraffine points
P, ..., P, B = (X, Y) were randomly selected with integgss| and|y;| bounded by
40 whenr = 2 and by 30 whem = 3, 4, such that the points had pairwise distinet
coordinates and none of them was the point at infinity. The points were discarded if any
three of the points(r > 3) were collinear. Note that if three poins Q andR are collinear
and E is an elliptic curve passing through these points, tReft Q + R = O € E(Q),
independently oE. Second, the five coefficieras (i = 1, 2, 3, 4, 6) of a curve in standard
Weierstrass form (witlag = a; = 1) were selected so that the curve passed through the
points and the coefficients were small. If there was no solution with integer coefficients,
the points were discarded. Third, the curve (and points) were discarded if the curve had
the samej-invariant as an earlier curve. Fourth, the same was done if any of bnts
were torsion points or if the curve had nontrivial 2-torsion. Finally, in the cases$, 4 if
the discriminant was greater tha# 2hat case was also discarded. The reason for this was
that in preliminary experiments we were unable to find a single case of dependency with
discriminant greater thar'2 and we wanted to avoid a lot of fruitless computation.

In all cases we computed the discriminant and the number oflrpothits for 7< | < 97.
A 2-descent (see [33], Appendix D) was used to check dependence. When the points were
dependent, the dependency relation with smallest coefficients was determined.

5.1.2. Results

Among the 200000 examples considered for eaeh 2, 3, 4, we found 2895, 21165 and
10698 dependent cases, respectively. For each value=02, 3, 4 and each bit-length of

the discriminanD, the proportion of dependent cases (i.e., the probability of dependence)
was tabulated and compared with various fractional powers of the discriminant. The data
suggest that when = 2, 3, 4 the probability of dependence is bounded, respectively, by
5/D|~Y/4, 66|D|~/4, 322D|Y/4. Some explicit results for = 4 are given in Table 1.
Here columnA is the bit-length of the discriminant; to keep the table small, we restrict
ourselves to listing the data for discriminants of bit-lengkh |6 > 1, and for the largest
discriminants. ColumrB is the number of example curves having discriminant of bit-
length A. ColumrC is the number of these curves for which the four points are dependent.
The fourth column is the proportidd/ B of dependencies. The last three columns show the
values ofRe = 2%/C/B, wheree = 3, 4, 5. Thus,R. is approximately equal to theth

root of the discriminant times the fraction of examples where the points were dependent:
Re ~ |D|Y¢. C/B.
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Table 1. r= 4: probability of dependence.

length(|D|)  # curves # curves %il'; R3 R4 Rs
w.dep.pts.

10 4 4 1 10.08 5.66 3.17
15 10 10 1 32 13.45 5.66
20 112 106 0.946 96.15 30.29 9.54
25 446 352 0.789 254.56 60.07 14.17
30 991 535 0.54 552.82 97.72 17.28
35 1433 411 0.287 932.42 12348 16.35
40 1879 299 0.159 1642.4 162.95 16.17
45 2409 194 0.081 2638.85 196.13 14.58
50 3079 133 0.043 4493.75 250.22 13.93
55 3725 65 0.017 5763.29 240.41 10.03
60 4417 17 0.004 4035.72 126.12 3.94
65 5100 4 0.001 2611 61.13 1.43
70 5754 2 0.0003 3673.61 64.43 1.13

71-72 12150 2 0.0002 2761.68 43.15 0.67

73-80 52156 0 0 0 0 0

The average value df ,_, o, w forr = 2, 3, 4 was, respectively;-4.401,—-6.163,
—8.108for all curves and-2.227,—4.336,—6.597 for the dependent cases. In other words,
very roughly it was equal on average-t@(rank of curve).

We also looked at the reverse-Mestre conditions fox 41 < 97. Of the 22 values
of I, no curve satisfied more than 3 reverse-Mestre conditions. The dependent cases had
significantly more likelihood than the independent cases of satisfying these conditions—but
still not a large probability. When = 4, for example, 17 out of the 10698 dependent cases
(about 0.16%) satisfied 2 or 3 reverse-Mestre conditions, whereas only 156 out of the 189302
independent cases (about 0.08%) did. In both cases, this proportion was far less than one
expects for a random curve. The reason is that, since the curves were constructed to pass
throughr points, they generally had higher rank, and hence in most cases moreroinds,
than an average curve. We also compiled statistics on the number of ‘reverse-Meaird
‘reverse-Mestre-2’ conditions (i.e. N, is| +1—[2+/1]+1 orl +1—[2+/1]+2, respectively);
the results were similar to what we found for the pure reverse-Mestre conditions. For
example, whem = 4, out of the 10698 dependent cases there were 83 cases when 2 or 3
reverse-Mestre-1 conditions held (none witk 3), and there were 148 cases when 2 or 3
reverse-Mestre-2 conditions held (none witk 3). Out of the 189302 independent cases
there were 703 cases with 2 or 3 reverse-Mestteconditions (none with- 3) and 1555
with 2 or 3 reverse-Mestre-2 conditions (2 with> 3).

Most remarkably, the coefficients in the dependency relations were very small. When
r = 2, over 98% of the coefficients were 4 or less in absolute value, and no coefficient was
greater than 8. When = 3, over 99.75% of the coefficients were 3 or less in absolute
value, and no coefficient was greater than 13. When 4, over 99% of the coefficients
were 2 or less in absolute value, and no coefficient was greater than 8. This is much less
than the theoretical bour@, derived in the previous section.
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5.2. A Second Approach

While doing experiments similar to those described above, we found an interesting effect
when we tried to mix our bounds on the coordinates. Namely, at one pointr(w4tB) we
tried to add to our sample 100000 examples for which the absolute values of the coordinates
of the 3 points were between 31 and 50 (rather than between 0 and 30). The large proportion
of cases that led to large discriminants were discarded, leaving only the examples with
smaller-than-average discriminants. In that situation there was a significant increase in the
probability of dependence (roughly by a factor of 4) for fixed bit-length of the discriminant.
This suggests that the probability depends not only on the size of the discriminant, but also
on how this size relates to the logarithmic height® ) of the lifted points. In particular, the
probability of dependence seems to be significantly greater for cures whose discriminants
are much smaller than the median.

In a second series of experiments we took advantage of this phenomenon. Here we also
were interested in the distribution of the discriminants of curves forced to go through
random points whose coordinates were chosen to lie within certain ranges.

5.2.1. The Experiment

In this series of experiments we worked with= 4 points whose coordinates, y;, were
chosen so that

Bk < Ixi| < Bya and By <|yi| < By, i=1234,
where
By =6k and Bj =[(6k)*2.

Initially, we planned to tak& = 1, ..., 10, but we ended up working with= 1-45, 51—
57,101-110, 150-157, 200-204, 250, 251, 252, 1000, 2100, 3000. For each such value of
k, 100000 curves were generated in the way described above. Besides the modified bounds
on the coefficients, the only difference was that we used the homogeneous Weierstrass form
with 7 coefficients, computed an LLL-reduced basis. . . , v7_, of the kernel of the matrix

B(P4, ..., P), and then chose a solution vectofrom the set{e;v; + -+ + €7 V7_, :

e = 0, &1} such that the discriminant of the corresponding curve is minimal. For each

k, out of the 100000 curves only the 1000 with smallest discriminant were examined for
dependency. Thus, about 8 million curves were generated, and 1% of them were examined
for dependency. For eaghwe also looked at the distribution of the 100000 discriminants.

5.2.2. Results

The distribution of the bit-length of the discriminant was very similar for different ranges
of k. It was not exactly a normal distribution—in particular, the mode was a few bits larger
than the median, which was a few bits larger than the mean. The ratio of the standard
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Table 2.The coefficients of the dependency relations.

k #curves #depend. 0 1 2 3 4 5 6 7
1-30 30000 9893 7591 29536 2060 279 74 24 6 2
31-45 15000 2019 1084 6805 173 31T — — —
51-57 7000 773 385 2651 5 2 — — — —

101-110 10000 909 296 3311 27 2 — - — —
150-157 8000 625 174 2311 4 1 - — — —
200-204 5000 623 87 2395 09 —— - — —
250-252 3000 169 42 631 3 - - — —
1000 1000 27 2 106 — - = = = =
2100 1000 41 3 161 — —_ — = = =
3000 1000 36 1 143 — - = = =

deviation to the mean was 0.22 for kli> 11 and between 0.25 and 0.23 foxlk < 10.

As a function ofk, the median was very close to 23ldg+ 30. The largest bit-length

of discriminant for the bottom 1% was consistently 48% or 49% of the median bit-length,
i.e., about 151log, k + 15. For example, fok = 101 the smallest 1% of the curves had
discriminants of bit-length between 22 and 92, while Ko 51 the range was 24 to 81
bits, and fork = 3000 the range was 63 to 151 bits.

In general, there was a much greater probability of dependence than in the previous
experiment. For example, fér= 101, ..., 110, the probability of dependence was about
30% for discriminants ok 40 bits, it was about 5% for discriminants in the 60-bit range,
and it dropped off gradually to about 1% for discriminants>000 bits. For the larger
values ofk, where most of the smallest 1% of discriminants had more than 100 bits, we
also found many dependent cases. For exampleg fer3000 there were 35 dependent
cases among the 998 curves with discriminants d00 bits, the largest of which was for a
151-bitdiscriminant. This contrasts dramatically with the earlier data, when the coordinates
of the P, were much smaller and the discriminants=060 bits came from the middle and
high range of discriminants; in that case we did not find a single dependency among the
vast number of cases of discriminaat2’2. Moreover, the probability of dependence was
no longer bounded bgonst. |D|~¥/4. Hence, having smaller than expected discriminant
helps force the points to be dependent.

However, when we examined the sizes of the coefficients in the dependency relations,
we realized that it was the very small size of these coefficients, rather than the small
probability of dependence for larg®|, that would be the most serious obstacle to the
xedni calculus. These coefficients tended to be as small or smaller than in the previous
experiment. Moreover, the chance of finding a dependency coefficient other thdn 1,

0 drops significantly as the discriminant grows. For examplekfer32 we encountered

no coefficients of absolute value greater than 3. In Table 2 we give the distribution of the
dependency coefficients. The first column is the rangewdlues; the second column is
the number of curves examined (i.e., 1000 times the numblewafues in the range); the
third column is the number of dependent cases. The column labadethe number of
dependency coefficients of absolute valyéhus, the sum of all of these columns is equal

to 4 times the third column).
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Out of the 27 dependent cases ko= 1000, 17 relations were of the forfy, + P, =
P; + P4. Fork = 2100, 33 out of 41 relations were of this form, and ko= 3000 this
was the case for 31 out of 36 relations. Note that the probability of getting this relation is
simply the probability that, when one passes a curve through the four points, it also passes
through the point of intersection of a line through two of the points with the line through the
other two. Although there is a significant chance of this happening even kiscarge,
this type of relation with coefficients1 is not useful for solving the ECDLP, where the
coefficients will be large.

We also wanted to see if the data could have been affected by the particular way we
generated the points (especially, the narrow rangg pand the fact thalty; | was so close
to |x|¥?). So we returned to a range roughly similarko= 250, but this time with
377 = 1369 < |x| < 1600, 37 = 50653 < |y;| < 64000 and also with 136% |x;|,
lvi| < 1600. In each case we generated 100000 examples and examined the bottom 1%.
This time the discriminants were much larger than before (up to 162 bits in the first case
and up to 125 bits in the second case), presumably because LLL had been able to find
much smaller coefficients whew; | was very close tgy;|2. Out of 1000 curves there
were, respectively, 14 and 50 dependencies, of which ten and eight were of the form
P1 + P, = P; + P4. Once again there were no coefficients other than1l,,0.

5.3. Preliminary Conclusions

So far, our experiments showed the following. First, the probability of dependence drops
off with increasing bit-length of the discriminant, but this drop-off depends on more than
just the bit-length. Another factor is the ratio of the actual size of the discriminant to the
expected size.

Second, reverse-Mestre conditions are more likely to be satisfied in the dependent cases
than in the independent cases. What is the probability of dependence given that reverse-
Mestre conditions hold for a few small primes? Such data cannot be extracted from our
experiments. For example, in the first experiment (with 200000 curves) and in the second
experiment (with 10000 curves of relatively small discriminant &net 101-110) we
checked for reverse-Mestre conditions and reverse-Mastreonditions fol = 7, 11 and
13. We found that in none of the cases, dependent or independent, were any two such
conditions satisfied simultaneously.

Third, the small sizes of the dependency coefficients seemed to cast doubt on the practi-
cality of the xedni algorithm. At this point we did not yet have data reflecting the situation
of ECDLP, where we deal with points whose smallest relation is necessarily fairly large.
What is the probability thals, . . ., P. are dependent, given that we know a priori that any
relation they satisfy must have moderately large coefficients?

5.4. Experiments with the Xedni Algorithm

To answer the questions raised above, we implemented the xedni algorithm. The size of the
parameters was chosen so that we had a reasonable chance of finding some dependent cases.
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For p = 17 and forp = 67, we did three different experiments, which can be classified as
follows: (A) no reverse-Mestre conditions imposed; (B) reverse-Mestre conditions imposed
for two small primes whose produbt is of approximately the same size ps(C) instead

of p work with p” &~ Mp, with no reverse-Mestre conditions imposed but withaken to

be of the same magnitude as the proddgt in (B).

In the context of an actual ECDLP, this means that both Experiments A and B would
be used to solve the same ECDLP but with different strategies. That is, the reverse-
Mestre conditions in Experiment B would presumably contribute to a greater likelihood of
dependency, but at the expense of much larger discriminants (which would work against
dependency). Experiment C, on the other hand, would be used to solve an unrelated
instance of ECDLP, but the discriminants in Experiment C are of similar size to those in
Experiment B. Comparing Experiments A and C with Experiment B, we should be able
to judge whether the reverse-Mestre conditions are helpful enough to compensate for the
larger discriminants.

Let us describe Experiment B with = 67 in detail. We chosa, = 0, b, = 28. Then
the curvey? = x3 + apx + b, overF, hasN = 73 points. We chos® = (1, 30) as a
generator folE(Fp,). Next, we choseVl = 77 =7-11, and we chos®@y ;,i =1, 2,3, 4,
to be the four pointg14, £15), (9, +19) on the modM curvey? = x3 + ayx + by with
ay = 1, by = 8. Note that the numbers of points mod 7 and 11 are, respectively, 5 and
6. In each case thB-matrix has rank 4; and since the numbers of points for diffdrang
relatively prime there is no worry about incompatibility and forced independence. Using
the Chinese Remainder Theorem, we then computewith —77p/2 < a,b < 77p/2
to be congruent ta,, b, modp and congruent tay, by mod 77. Hencex = 1541 and
b = 162. Then the steps 1-4 below are repeated 100000 times.

1. Forany vecton € Fy, define|n||? to be}", n?, where the coordinates of n are taken
intheinterval-N/2 < n; < N/2. Fori =1, 2,3, 4setP,; = u; Py, where the vector
w € F{, is chosen so that; = 1, i # 0modN, and||n||? > 5 for all nonzero vectors
ne IF‘,‘\l orthogonal tax. This means that we do not allow thRe to satisfy a relation
with all coefficients 01, —1.

2. Foreach = 1,2 3,4 use the Chinese Remainder Theorem to ch@rsey;) to be
congruent to the coordinates Bf; modp and to those oPy ; mod 77. Now choose
P = (X,Yi, Z) in projective coordinates by finding a short vector in the lattice
generated by the columns of the matrix

x 77p 0 0
yy 0 77p 0
1 0 0 7P

subject to the condition tha; is not divisible by 7, 11, op.
3. Solve for small integers; such that the curv& (Q) with equation

(A+77pup)Y?Z+77pup XY Z+77pusY 22 = (1+77pus) X3+77pusX?Z
+ (@+77pug) X Z%4(b+77puy) 23
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passes throughk, = (X, Y;, Zi),i = 1, 2, 3,4, and has minimal discriminant. Here
we use the techniques described in Steps 7 and 9 and Appendix B of [33], including the
Havas-Majewski-Matthews Hermite normal form algorithm [7].

4. Finally, check whether th® are dependent. In case of dependency, compute the
dependency relation with smallest coefficients.

Experiment A differs from Experiment B only in th& = 1. For the corresponding
Experiment C, we chosp = 5167,a, = 2462,b, = 1260, andP, = (2,949. The curve
y? = X3 + apX + b, overF, hasN = 5153 points.

For Experiments A and B witlp = 17, we took = 2 and chose, = b, = 2. Thenthe
curvey? = x3 4 apX + b, overFy hasN = 19 points. We chos&, = (3, 1) as generator.
We worked withM = 15 = 3-5, and chos#y ; and Py » to be the two pointg5, £2) on
the modM curvey? = x3 +x2 +x + 14. The number of points is 3 both mod 3 and mod 5.
The factthat? ; = — R » for bothl = 3, 5 guarantees that we do not force the lifted points
to be independent. Chinese Remaindering gives coefficieb1®, 121 and 104. Hence,
in Experiment A we work with the curvg? = x4 2x +2mod 17, while in Experiment B
we work with the curvey? = x® — 1192 4 121x + 104 mod 255. For Experiment C we
chosep = 257,a, = 88,b, = —41, andPy = (2, 20). The curvey? = x3 + apx + by
over[F, hasN = 263 points. Note that since we work with only two points, the veators
andy of Step 1 above are vectorslit}. The only conditions imposed o, (i = 1, 2)
are that they are not the point at infinity aRgl; # £Pp ».

5.4.1. Results

Among the 6 series of 100000 executions of Steps 1-4 above, only in 3 series did we
obtain any dependencies. This was in Experiment A vaite= 17 andp = 67, and in
Experiment B withp = 17. Details are shown in Table 3.

The data show that, given an instance of the ECDLP—i.e., a fixed valpe-afe are
more likely to produce dependent cases if we do not impose reverse-Mestre conditions.
When we work with discriminants of approximately the same size—i.e., with varjable
but fixed size ofM p—the different outcomes of Experiment B wh&tp = 15- 17 and
Experiment C wheiMp = 1- 257 might be interpreted as evidence that imposing reverse-
Mestre conditions has a significant impact. However, the three relations in Experiment B
are all of the formP, = 2P, or P, = 2P;. Notice that once one of the two points mpd
is chosen, there afd — 3 possibilities for the other one, and the probability that the two
points satisfy a dependency with coefficieat® is 2/(N — 3) = 1/8 in Experiment B and
4/(N —3) = 1/65in Experiment C. (Note that in Experiment B the coefficients, must
satisfy the congruenag —n, = 0 (mod 3, becausd) ;1 = —R > andN, = 3forl = 3, 5;
that is why the numerator abole— 3 is 2 rather than 4 in Experiment B.) Our experience
has been that it is much more likely that a relation of the fé&m + 2P, > = 0 can be
lifted than that a relation with larger coefficients can be lifted. Thus, the greater likelihood
of dependency in Experiment B than in Experiment C might have little or nothing to do
with the reverse-Mestre conditiofs.
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Table 3.Experiments A, B, C (100000 examples of each).

Dmin Dmax Dav # dep. dependent cases
Dmin Dmax Day
A P='T a7bis 131bits  73bits 317 23bits  Olbits  61bits
B D=l aibis 273bits 182bits 3 140bits 15Lbits 144 bits
c P=2 sobits 285bits 167hbits 0 — — —
A P=°T  s7bits 257bits 148bits 153 59bits 170bits 114 bits
p =67 . . .
B M= 77 289 bits 612 bits 421 bits 0 — — —
c  PoOO7 sgobis s8ibits 39abits 0 — — —

Table 4.Experiments A: coefficients.

# deps. 0 1 2 3 4 5 6 7

p=17,r =2 317 — 311 304 16 2 — — 1
p=67,r=4 153 232 221 155 21 — 1 —

Looking at the relations in the Experiments A, we find that the great majority have
coefficients 01, £2. The sizes of the coefficients are shown in Table 4. As in Table 2,
the column labeled shows the number of dependency coefficients of absolute valve
see that the coefficients are very small.

Furthermore, 301 out of the 317 relations for= 17 were of the formP;, = +2P, or
2P; = +P,. Out of the remaining 16 relations, only 6 have both coefficients larger than
1. Forp = 67, 97 out of the 153 relations were of the foifn= +2P;, 33 were of the
form B, £ P, = 2P, and 9 were of the forn®, & P; & P, = 2R Out of the remaining 14
relations, six have two coefficients larger than one.

6. Conclusion

Xedni calculus is impractical fop in the range used in elliptic curve cryptography. In the
first place, the basic properties of the canonical logarithmic height, along with a pigeon-
hole argument, show that the coefficients in a dependency relation among the lifted points
are bounded by an absolute constant. This implies an asymptotic running time of at least
O(p). Inasense, xedni fails asymptotically for much the same reason that index calculus is
infeasible (see [21, 34]). In the second place, even if liftings exist with dependency among
the points, the probability of finding such a lifting decreases as the discriminant grows, and
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it becomes very low by the timp reaches the practical range. In the third place, empirical
data show that the theoretical bounds on the size of the dependency coefficients are far too
generous compared to what happens in practice; and for high discriminants it is virtually
impossible to find dependencies where the coefficients cannot be taken to be of trivial size
(usually+1). Finally, although, in the absence of other considerations, the reverse-Mestre
conditions do increase the likelihood of dependency, they also cause the discriminant to

increase substantially, and so most likely the net effect is to do more harm than good.
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Notes

1. Ataboutthe same time, some similar ideas were developed independently in Korea [4].

2. We're assuming tha@ has “good reduction” dt i.e., thal does not divide the denominators of the coefficients
or the discriminanD of the curve. For brevity, we shall not discuss the modifications needed for the “bad”
primesl.

3. Whenn = is prime, ther, is our earlieray; for compositen it is not hard to expresa, in terms ofg for
I|n.

In particular,N|D, and bothN andD have the same prime divisors.

5. Itwould not make much difference if, instead, the logarithmic height were defined as logmgx, |c|, |d|),
wherey = c/d in lowest terms, or even as Igigbcd|, which really is (essentially) the number of bits needed
to write downP.

6. Sinceitis customary to writg for the coefficients of the general Weierstrass equation, we shall also adhere to
this notation and hope that it does not lead to confusion with the uae(loprime) to denoté + 1 — #E (),
which is also customary. Also note that usually one takes- a; = 1 anday, az, as, as, a € Q; however,
we want integer rather than rational coefficients, so it is useful to introdsiaaday.

7. Roughly speaking, this condition says that the discriminant of the lifted curve is greater ti@&ntthpower
of the maximum absolute value of the numerators and denominators of the coordinates of the lifted points,
for some absolute consta@f > 0. This is a reasonable assumption, since the discriminant is a polynomial
function of the coefficients of the curve, and the coefficients tend to grow proportionally to a power of the
integer projective coordinates of the points through which the curve must pass.

8. On the other hand, it is known (see [8, 27]) that in order to get a very small valGg, af is necessary
that the discriminanD be divisible by many primes to fairly high powers. However, from the way they are
constructed, the xedni curves tend to have discriminants that are square-free or almost square-free.

9. There s areason unrelated to the heuristics of the Birch—Swinnerton-Dyer Conjecture why, among the condi-

tions that one might impose moduld |M, the reverse-Mestre conditions are the ones that are most likely to
produce dependencies. Note that the rhadnditions lead to congruences that the dependency coefficients
must satisfy. These congruences are likely to be more restrictNe 4 #E(IF)) is larger. For example, we
saw that the reverse-Mestre conditions in Experiment B led only to the constraing that; = 0 (mod 3,
which has a small nontrivial solutiom = 1,n, = —2. Suppose that we had instead chosen our hwaves
and points so thalllz = 5, Ns = 7 (which are “average” rather than reverse-Mestre valuesPaad= 2Pz 1,
Ps2 = —Ps 1. Then any dependency coefficients must satigfy- 2n, = 0 (mod 5, np — n; = 0 (mod 7).
One can check that the smallest (in the seng@pfnonzero solution to these congruencesgis= 3,n; = —4.
It is far, far harder to find dependencies with bath n, > 3 than it is to find dependencies with = 1,
np, = —2.
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