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Abstract. The xedni calculus attack on the elliptic curve discrete logarithm problem (ECDLP) involves lifting
points from the finite fieldFp to the rational numbersQ and then constructing an elliptic curve overQ that passes
through them. If the lifted points are linearly dependent, then the ECDLP is solved. Our purpose is to analyze
the practicality of this algorithm. We find that asymptotically the algorithm is virtually certain to fail, because of
an absolute bound on the size of the coefficients of a relation satisfied by the lifted points. Moreover, even for
smaller values ofp experiments show that the odds against finding a suitable lifting are prohibitively high.
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1. Introduction

At the Second Elliptic Curve Cryptography Workshop (University of Waterloo, September
14–16, 1998), Joseph Silverman announced a new attack on the elliptic curve discrete
logarithm problem (ECDLP) over a prime fieldFp. He called his method “xedni calculus”
because it “stands index calculus on its head.”1

Recall that the ECDLP is the problem given two pointsP, Q on an elliptic curve over
Fp, of finding an integerw such thatQ = wP. Very briefly, Silverman’s idea was to
taker random linear combinations of the two pointsP, Q, where 2≤ r ≤ 9 (most likely
r = 4,5 or 6), and then consider pointsPi with rational coordinates that reduce modulop
to theser points and elliptic curvesE over the rational number fieldQ that pass through
all of the Pi and reduce modp to the original curve overFp. If those “lifted” points
Pi are linearly dependent, then the ECDLP is solved. The probability of dependence is
almost certainly very low, but Silverman had an idea of how to increase this probability,
possibly by a dramatic amount. Namely, he imposes on thePi and E a set of auxiliary
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conditions modulol for several small primesl . These conditions guarantee that the elliptic
curves will have fewer-than-expected points modulol , and this presumably decreases the
likelihood that ther Q-points Pi will be independent. (More details will be given in §3
below.)

Silverman’s algorithm, which had been circulating in manuscript form for about two weeks
before the conference, created a stir for several reasons. In the first place, this was the first
time in about seven years that a serious attack had been proposed on an important class
of elliptic curve cryptosystems. In the second place, Silverman’s approach involved some
sophisticated ideas of arithmetic algebraic geometry—most notably, the heuristics of the
Birch–Swinnerton-Dyer Conjecture—that had never before had any practical application.
In the third place, because of the subtlety of the mathematics being used, even people
who had computational experience with elliptic curves were completely baffled in their
initial attempts to estimate the running time of the xedni calculus. No one, for example,
could say with absolute certainty that it would not turn out to give a polynomial-time
algorithm!

If it were practical, the xedni calculus would not only break elliptic curve cryptosystems
(ECC). As Koblitz showed, it can easily be modified to attack (1) the Digital Signature
Standard (i.e., the discrete logarithm problem in the multiplicative group ofFp), and (2)
RSA (i.e., the integer factorization problem). Thus, essentially all public-key cryptography
that’s in widespread use in the real world was threatened.

Of course, most people, including Silverman himself, thought that it was highly unlikely
that the algorithm would turn out to be so efficient that it would render ECC, DSS, and RSA
insecure. However, it is not enough to have a “gut feeling” about such matters. One needs
to find solid mathematical arguments that enable one to evaluate the efficiency of the xedni
calculus. That is the purpose of this paper.

2. Background

2.1. The Hasse–WeilL-Function

Let E be an elliptic curve defined over the fieldQ of rational numbers, and letNl = l+1−al

denote the number of points on the reduction of E modulol .2 For eachl we have the
associated quadratic polynomial 1− al T + lT 2 = (1− αl T)(1− αl T) whose value at
T = 1 is Nl ; this polynomial is the numerator of the zeta-function ofE modl . By Hasse’s
Theorem,αl is a complex number of absolute value

√
l .

The Hasse–WeilL-function of the curveE is defined by analogy with the Riemann zeta-
function ζ(s) = 5primesl

1
1−l−s . Namely, we takeL(E, s) to be the product overl of the

following “Euler factor”:

1

(1− αl · l−s)(1− αl · l−s)
= 1

1− al · l−s + l · l−2s
.

It is easy to verify that the infinite product converges for Re(s) > 3/2 (just as the Euler
product for the Riemann zeta-function converges for Re(s) > 1). By the “critical value” we
mean the value ofL(E, s) at s = 1. Just as one has to analytically continue the Riemann
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zeta-function a distance 1/2 to the left in order to react the “critical line,” similarly one
has to analytically continueL(E, s) a distance 1/2 to the left in order to reach the critical
value.

However, analytic continuation ofL(E, s) is not nearly so simple as in the case ofζ(s);
and, in fact, it has been proven only in the case whenE is “modular” in the following
sense. If we expand the Euler product, we can writeL(E, s) in the form

∑
an · n−s.3 We

now introduce a new complex variablez, and in each term we replacen−s by e2π inz. The
result is a Fourier series

∑
ane2π inz that converges in the complex upper half-plane. We

say thatE is “modular” if this Fourier series is a modular form, that is, if it satisfies a
simple transformation rule whenz is replaced by(az+ b)/(cz+ d) for any integer matrix
(a b
c d) of determinant 1 withc ≡ 0 (mod N). HereN is the “conductor” of the curveE;

it is closely related to the curve’s discriminantD.4 In order to know unconditionally that
analytic continuation is possible and the critical valueL(E,1) is defined, we need the curve
E to be modular.

2.2. The Taniyama Conjecture

The Taniyama Conjecture is the assertion that all elliptic curvesE overQ are modular. One
reason for its importance is that it guarantees that the Hasse–WeilL-function of E can be
analytically continued, and its behaviour nears= 1 can be studied.

It is for a different reason that most people have heard of this conjecture, namely, its
connection to Fermat’s Last Theorem. In 1985 Gerhard Frey suggested that ifAp+Bp = Cp

were a counterexample to Fermat’s Last Theorem, then the elliptic curve

Y2 = X(X − Ap)(X + Bp)

would have a very surprising property. Its discriminant would be

16(ApBp(Ap + Bp))2 = 16(AB D)2p,

so every prime factor in this discriminant would occur to a very large power. Frey thought
that it would then have to violate the Taniyama Conjecture. K. Ribet was able to prove
that Frey’s hunch was correct [24]; then, working intensively for many year, A. Wiles
(partly in joint work with R. Taylor) [37, 36] proved that no such curve can violate the
Taniyama Conjecture, and hence there can be no counterexample to Fermat’s Last Theo-
rem.

Wile proved the Taniyama Conjecture for a broad class of curves—the “semi-stable” ones,
i.e., the ones whose conductorN is squarefree—but not for all curves. What he proved
was enough for Fermat’s Last Theorem. The full conjecture was subsequently proven by
Breuil, Conrad, Diamond, and Taylor.

2.3. The Conjecture of Birch and Swinnerton-Dyer

As before, letE be an elliptic curve defined overQ, and letNl denote the number of mod-l
points. Asl increases, suppose that we want to get an idea of whether or notNl tends to
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be toward the right end of the Hasse interval [l + 1− 2
√

l , l + 1+ 2
√

l ], that is, whether
or not there tend to be more-than average points on the curve. We might expect that if
our original curve overQ has infinitely many points—that is, if its rankr is positive—then
these rational points would be a plentiful source of mod-l points, andNl would tend to be
large; whereas ifr = 0, thenNl would straddle both sides ofl + 1 equally. This is the
intuitive idea of the (weak) Birch–Swinnerton-Dyer Conjecture [1, 2, 3].

To measure the relative size ofNl andl asl varies, let us form the product
∏

l
l
Nl

. Because
Nl = l − αl + 1, we can write this as∏

l

l

l − αl + 1
=
∏

l

1

1− αl · l−1+ l · l−2
,

which is formally equal to the value ats = 1 of the Euler product forL(E, s). We
say “formally,” because that product diverges, and the critical value is found by analytic
continuation, not by evaluating an infinite product.

Nevertheless, let us suppose that it makes sense to talk about this infinite product as
if it converged. One might expect that it would converge to zero ifNl has a tendency
to be significantly larger thanl , and would converge to a nonzero value ifNl is equally
likely to be above or belowl . And, indeed, the Birch–Swinnerton-Dyer Conjecture states
that L(E, s) vanishes ats = 1 if and only if the rankr of the group ofE overQ is
greater than zero, and that, moreover, its order of vanishing ats = 1 is equal tor . The
conjecture further says that the leading coefficient in the Taylor expansion ats = 1 can
be expressed in terms of certain number-theoretic invariants ofE. Starting in 1977, a
series of important partial results have been proved in support of this fundamental con-
jecture (see [5, 6, 25]), but in its most general form it remains a very difficult unsolved
problem.

2.4. Heights

Let E be an elliptic curve (in Weierstrass form) over the fieldQ of rational numbers. Let
P = (x, y) be a rational point onE (not the point at infinity). Thelogarithmic height
of P is defined by the formulah(P) = log max(|a|, |b|), wherex = a/b is written as a
fraction in lowest terms. The logarithmic height is closely related to the point’s size in the
computer-science sense (i.e., its bit-length).5

It can be shown that, ifP is a point of infinite order, thenh(nP) growsquadratically
with n. That is, if you write out a list of the multiples ofP, one on each line, the lengths of
the lines will increase proportionately ton2 and so form a parabola. (For a picture of this
in the case of the elliptic curveY2 + Y = X3 − X and the pointP = (0,0), see page 143
of [11].)

The logarithmic height, which has a roughly quadratic behavior, can be modified (this was
done by Néron [23] and later simplified by Tate) in such a way that the resultingcanonical
logarithmic heightĥ(P) is precisely a quadratic form. Namely, define

ĥ(P) = 1

2
lim

n→∞
1

n2
h(nP).
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The values of̂h(P) and 1
2h(P) are close to one another—in fact, it can be shown (see

p. 229 of [29]) that their difference is bounded by a constant depending only onE—but it
is the functionĥ rather thanh that has the nicer properties.

Suppose that the groupE(Q) has rankr , i.e., the quotient groupE(Q)/E(Q)tors is
isomorphic toZr . Let P1, . . . , Pr be a set of generators. The formula

〈P, Q〉 = 1

2
(ĥ(P + Q)− ĥ(P)− ĥ(Q))

defines a positive inner product on ther -dimensional real vector spaceV obtained from
E(Q)/E(Q)torsby formally allowing thePi to have real (rather than just integer) coefficients.
This vector space can also be defined using the tensor product notation:V = E(Q)⊗ R.
Note thatE(Q)/E(Q)tors is a full lattice inV .

Theregulatorof E is defined as follows:

R= det(〈Pi , Pj 〉)1≤i, j≤r .

It is the square of the volume of a fundamental parallelepiped of the latticeE(Q)/E(Q)tors

with respect to our inner product. The real numberR is an important constant attached
to the elliptic curve. In the Birch–Swinnerton-Dyer Conjecture, it appears as one of the
factors in the first non-zero Taylor coefficient of the expansion ofL(E, s) ats= 1.

3. Summary of the Algorithm

3.1. Simplified Version

We want to find an integerw such thatQ = wP in E(Fp).
Working in projective coordinates, we choose two pointsP̃ andQ̃ with integer coordinates

whose residues modulop are our pointsP, Q ∈ E(Fp). We also choose an elliptic curve
E(Q) that passes through̃P andQ̃ and that reduces modulop to the curveE(Fp).

Now suppose that̃P andQ̃ turn out to be dependent inE(Q), that is,

n1P̃ + n2Q̃ = O,

in which casen1 andn2 can easily be found. If that happens, working modulop we get

n1+ n2w ≡ 0

modulo the order ofP in E(Fp); from this we can easily findw.
However, in general the probability that̃P and Q̃ are dependent is very, very small.

Silverman’s idea is to increase this probability by imposing some conditions of the following
type:

#E(Fl ) ≈ l + 1− 2
√

l

—that is, the reduction modulol of E(Q) has relatively few points for all primesl , L0 ≤
l ≤ L1 (whereL0 ≈ 7, L1 ≈ 100).
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This idea was suggested by J.F. Mestre’s success in obtaining curves ofhigher than
expected rank by imposing conditions in theoppositedirection, i.e.,

#E(Fl ) ≈ l + 1+ 2
√

l .

Both strategies (for obtaining either higher-than-expected or lower-than-expected rank)
are based on the heuristic argument for the conjecture of Birch and Swinnerton-Dyer (see
Section 2.3), which says that the rank ofE(Q) is equal to the order of vanishing ofL(E, s)
at s = 1. Mestre’s method is to force the first several terms in the formal infinite product
for L(E,1) to be as small as possible, whereas Silverman wants them to be as large as
possible.

3.2. The Algorithm

We now describe the steps in the xedni algorithm [33].

Step 1. Choose an integerr with 2≤ r ≤ 9 (most likely 4≤ r ≤ 6), and integersL0 ≈ 7
andL1 ≤ 100. Set

M =
∏

l prime,L0≤l≤L1

l .

Also, decide whether you will be working with elliptic curves in general cubic form or
in Weierstrass form. In the first case, for anyr -tuple of projective pointsPi = (Xi ,Yi , Zi )

over a field, letB(P1, . . . , Pr ) denote the(r × 10)-matrix whosei -th row is

(X3
i X2

i Yi Xi Y
2
i Y3

i X2
i Zi Xi Yi Zi Yi Z

2
i Yi Z

2
i Z3

i ).

Then ther points lie on a given cubic curve with coefficientsui , i = 1, . . . ,10, if and only
if the column-vectoru is in the kernel of the matrixB(P1, . . . , Pr ). If, on the other hand,
the elliptic curve is given in the Weierstrass form6

a0Y2Z + a1XY Z+ a3Y Z2 = a′0X3+ a2X2Z + a4X Z2+ a6Z3,

then we takeB(P1, . . . , P4) to be the (r × 7)-matrix whosei -th row is

(Y2
i Zi Xi Yi Zi Yi Z

2
i X3

i X2
i Zi Xi Z

2
i Z3

i ).

In this case ther points lie on the curve if and only if the vector(a0 a1 a3 −a′0 −a2 −a4 −a6)
T

is in the kernel ofB(P1, . . . , Pr ).

Step 2. For eachl |M , chooser points Pl ,i in the projective plane overFl such that the
matrix B(Pl ,1, . . . , Pl ,r ) has rankr . Let PM,i denote a point moduloM that reduces toPl ,i

modulol for eachl |M ; such a point can be found by the Chinese Remainder Theorem. If
r ≥ 4 and you’re working with the general form of a cubic (rather than Weierstrass form),
for convenience and slightly greater efficiency choose the first four points to be(1,0,0),
(0,1,0), (0,0,1), and(1,1,1).
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Also choose a mod-M coefficient vector(uM,1, . . . ,uM,10) (or, if you’re using Weierstrass
form,(aM,0,aM,1,aM,3,−a′M,0,−aM,2,−aM,4,−aM,6)) that is in the kernel of theB-matrix
for eachl |M . Choose the coefficient vector so that for eachl |M the resulting cubic curve
is an elliptic curve (i.e., the discriminant is nonzero) with the fewest possibleFl -points:

Nl = #E(Fl ) = l + 1− [2
√

l ],

which is the smallest integer in the Hasse interval. This equality is called the “reverse-Mestre
condition” atl .

Remark 1. In some circumstances it might be better to allow a weaker reverse-Mestre
condition, and instead require only that

Nl = #E(Fl ) = l + 1+ ε − [2
√

l ],

whereε = 1 or 2.

Remark 2. Note that the condition thatB have rankr implies that thePl ,i must be distinct
points, and henceNl = #E(Fl ) ≥ r . Thus,L0 must be chosen large enough so that this
inequality does not contradict the (weak) reverse-Mestre condition. For example, ifr = 4
or 5, then one can chooseL0 = 7.

Remark 3.When constructing thePl ,i and coefficient vectors for the different small primes
l , some care has to be taken so as not to inadvertently cause the lifted points in Step 6
below to automatically be independent. In cases whenNl andNl ′ have a common factorτ ,
there has to be a certain compatibility between the images of thePl ,i in the quotient group
E(Fl )/τE(Fl ) and the images ofPl ′,i in E(Fl ′)/τE(Fl ′).

To illustrate in a simple situation, let us taker = 2 and suppose thatN13 = 7 and
N31 = 21 in accordance with the reverse-Mestre conditions. Suppose thatP13,2 = aP13,1

andP31,2 = bP31,1, wherea andb are integers modulo 7 and 21, respectively. (Here we are
supposing thatP13,1 is not the point at infinity, andP31,1 is not a point of order 3.) Unless
a ≡ b (mod 7),the lifted pointsP1 andP2 are forced to be independent. To see this, suppose
that we had a nontrivial relation of the formn1P1+ n2P2 = O. Since our lifted curve will
almost certainly have no torsion points (in particular, no points of order 7), we may suppose
that 7 does not divide bothn1 andn2. If we reduce this relation modulo 13 and 31, we obtain
(n1 + n2a)P13,1 = 0 and(n1 + n2b)P31,1 = 0. Hencen1 + n2a ≡ n1 + n2b ≡ 0 (mod 7),
and soa ≡ b (mod 7).

Remark 4. The reason for requiring that theB-matrix have rankr for eachl |M is that this
is precisely the condition that is needed in order to ensure that one can find coefficients for
an elliptic curve overQ that both passes through the lifted points and reduces modulo the
primesl and p to the curvesE(Fl ) (for l |M) andE(Fp) that we already have (see Step 7
below). This is proved in Appendix B of [33]. Here we shall motivate the rank-r condition
for the B-matrix by giving an example in a simpler setting.

Suppose thatr = 2, and we’re working with straight lines in the projective plane, rather

than elliptic curves, so that theB-matrix is just

(
X1 Y1 Z1

X2 Y2 Z2

)
. Let l = 3. Suppose that
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we have ignored the rank-r condition and overF3 have chosen pointsP3,1 = (1,1,1)
and P3,2 = (2,2,2) and the straight lineX − Y = 0. Suppose that we have lifted the
points toQ as follows: P1 = (1,1,1), P2 = (2,5,−1). We now want to find a lifted line
(1+ 3a)X − (1+ 3b)Y + 3cZ = 0 that reduces toX − Y = 0 modulo 3 and that passes
throughP1 andP2. A simple calculation shows that this is impossible.

Step 3. Let P, Q ∈ E(Fp) be the points in the discrete log problem; that is,Q = wP for
some unknown integerw. Chooser random integer linear combinations of the two points
P, Q:

Pp,i = si Q− ti P ∈ E(Fp).

Our entire purpose in the algorithm is to find a linear dependency among thePp,i :

n1Pp,1+ · · · + nr Pp,r = O.

If we succeed, then we immediately obtain the following congruence modulo the order of
the pointP:

(n1s1+ · · · + nr sr )w ≡ (n1t1+ · · · + nr tr )mod ord(P).

From this we can almost certainly solve forw (recall that in cryptographic applications the
order ofP is usually a large prime).

Step 4. If r ≥ 4, and if you want to look for a lifted elliptic curve in general cubic
form (so that you have more coefficients to work with), then make a linear change of
variables in the projective plane overFp so that the first four points becomePp,1 = (1,0,0),
Pp,2 = (0,1,0), Pp,3 = (0,0,1), Pp,4 = (1,1,1). In that case we letup,i , i = 1, . . . ,10,
denote the coefficients of the resulting equation forE(Fp).

Step 5. Use the Chinese Remainder Theorem to find coefficientsu′i moduloMp that reduce
to up,i modulo p and touM,i moduloM , i = 1, . . . ,10. (Do the analogous thing with the
ai coefficients if you are working in Weierstrass form.)

Step 6. Lift the r points to the projective plane over the rational numbers. That is, for
i = 1, . . . , r choose pointsPi = (Xi ,Yi , Zi ) with integer coordinates that reduce toPp,i

modulo p and toPM,i moduloM . If r ≥ 4 and you are working with the general form of
a cubic, then take the first four points to beP1 = (1,0,0), P2 = (0,1,0), P3 = (0,0,1),
P4 = (1,1,1).

Step 7. Using ther pointsPi from Step 6, form the matrixB(P1, . . . , Pr ). Find an integer
vectorū = (u1, . . . ,u10) such thatBū = 0 andui ≡ u′i (modMp) (or an analogous vector
of ai ’s if you’ve been working with curves in Weierstrass form). The rank-r condition on
the mod-l B-matrices ensure that we can do this. Try to findū so that theui are as small as
possible.
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Step 8. If you’ve been working with the general equation of a cubic, make a linear change
of variables to bring it into Weierstrass form.

Steps 9–10 (optional).Modify the solutionū in Step 7 by adding or subtracting vectors
of the formMpv̄, where the vectors̄v are chosen from a basis of solutions toBv̄ = 0 that
have small coordinates. Choose a new solutionū such that the discriminant of the curve
with coefficientsu1, . . . ,u10 is as small as possible. (Go through the analogous procedure
with theai if you’ve been working with curves in Weierstrass form).

Also, let L be a constant of order about 200. For each curve compute the sum∑
l≤L ,l /|M

al
log l

l
.

If this sum is smaller than a pre-determined quantity (that is arrived at experimentally),
discard the curve and start over again with Step 2 or Step 3. Otherwise, continue to Step 11.

Step 10 is based on an analytic formula for the rank of a modular curve that was proved
by Mestre [20]. (Notice that his formula can be used because of the Taniyama Conjecture,
which says that all elliptic curves overQ are modular.) In Mestre’s formula the above sum
appears as a crucial term. Heuristically, it is plausible that the more negative this sum is,
the more likely the curve is to have large rank. Since we want smaller-than-expected rank,
we might want to throw out curves for which the sum is highly negative.

Step 11. Finally, test the points for dependence. There are at least two efficient methods
of doing this (see [33]). If they are independent, return to Step 2 or Step 3. If they are
dependent, it is not hard to find the coefficients of a relation. As explained in Step 3, it
is then very easy to find the discrete logarithmx. This completes the description of the
algorithm.

4. Asymptotic Failure of the Algorithm

The purpose of this section is to prove

THEOREM4.1 Under certain plausible assumptions (see the lemma below), there exists an
absolute constant C0 such that the probability of success of the xedni algorithm in finding
a discrete logarithm on an elliptic curve overFp is less than C0/p.

Unfortunately,C0 is rather large, so this result does not immediately resolve the question
of practicality of the algorithm. We address that question in the next section.

Recall the notion of the canonical logarithmic heightĥ(P) (see §2.4). Given an elliptic
curveE overQ having infinitely many rational points, letm denote the minimum of̂h(P)
for all nontorsion pointsP ∈ E(Q). Let D denote the discriminant ofE. Then a conjecture
of Lang (see p. 92 of [12] or p. 233 of [29]) states that there exists a positive absolute
constantC3 such thatm > C3 log |D|. This conjecture was proved for a large class of
curves in [27, 8], but it has not yet been proved unconditionally for all curves overQ.
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LEMMA 4.1 Assume thatlog |D| ≥ C1 maxi=1,...,r ĥ(Pi ) for the lifted curves in the xedni
algorithm, where D is the discriminant of the lifted curve, Pi are the lifted points,̂h is the
canonical logarithmic height, and C1 is a positive absolute constant.7 Then, under Lang’s
conjecture, if the lifted points are dependent, then they satisfy a nontrivial relation with
coefficients bounded from above by an absolute constant C2.

Proof. Following [34], we estimate the number of points ofE(Q)—more precisely,
the number of points in the subgroupE′ spanned by the lifted pointsP1, . . . , Pr —whose
canonical logarithmic height is bounded by a constantB. Suppose that thePi are inde-
pendent, and letr ′ ≤ r − 1 denote the rank ofE′. Let T ′ denote the number of torsion
points in E′. (In practice, almost certainlyT ′ = 1; and by a famous theorem of Mazur
[16] alwaysT ′ ≤ 16.) Let V ′ = E′ ⊗ R, and let R′ denote the regulator ofE′, i.e.,
R′ = det(〈P′i , P′j 〉)1≤i, j≤r ′ , whereP′1, . . . , P′r ′ are a basis forE′/E′tors. Finally, we define

N(B) = #{P ∈ E′ : ĥ(P) ≤ B}.
To estimateN(B), one uses standard results from the geometry of numbers. According

to Theorem 7.4 of Chapter 5 of [13],

N(B) = T
Vball(r ′)√

R′
Br ′/2+ O(B(r

′−1)/2),

whereVball(r ′) is the volume of ther ′-dimensional unit ball:

r ′ Vball(r ′)

1 2
2 π = 3.14· · ·
3 4

3π = 4.18· · ·
4 1

2π
2 = 4.93· · ·

5 8
15π

2 = 5.26· · ·
6 1

6π
3 = 5.16· · ·

7 16
105π

3 = 4.72· · ·
8 1

24π
4 = 4.05· · ·

It follows from Corollary 7.8 of Chapter 5 of [13] that

R′ ≥
(

1

2

√
3

)r ′(r ′−1)

mr ′ ,

where, as before,m denotes the smallest positive value ofĥ on E(Q) (actually, we could
replacem by the smallest positive value ofĥ on E′). If we combine these relations and
denote

c(r ) = Vball(r )

(√
3

2

)−r (r−1)/2

,
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we obtain

N(B) < T c(r ′)
(

B

m

)r ′/2

+ O(B(r
′−1)/2).

Now letM denote the maximum of̂h(Pi ), i = 1, . . . , r . Since
√

ĥ is a metric, the height
of any integer linear combination of thePi with coefficientsni bounded by1

2C2 (whereC2

will be chosen later) is bounded as follows:

ĥ(n1P1+ · · · + nr Pr ) ≤
( r

2
C2

√
M
)2
=
( r

2

)2
C2

2M.

If we substituteB = ( 1
2r )2C2

2M in our inequality forN(B), we find that the number of
points that

∑
ni Pi can be, i.e., the number of points that satisfy the above inequality for

the height, is less than

T c(r ′)
( r

2

)2′

Cr ′
2

(M
m

)r ′/2

.

But the number of linear combinations
∑

ni Pi with |ni | ≤ 1
2C2 is very close toCr

2. If

Cr
2 > T c(r ′)

( r

2

)r ′

Cr ′
2

(M
m

)r ′/2

,

then there must be two different linear combinations that are equal, and so the pointsPi

satisfy a nontrivial linear relation with coefficients bounded byC2.
We now use the assumptions in the lemma. By Lang’s conjecture,m≥ C3 log |D|. Since

we also assumed that log|D| ≥ C1M for some positive absolute constantC1, we have

M
m
≤ 1

C1C3
.

Dividing the previous inequality through byCr ′
2 , and using the fact thatr ′ ≤ r − 1, we find

that it suffices to have

C2 ≥ T c(r − 1)
( r

2

)r−1
(C1C3)

−(r−1)/2.

SinceT ≤ 16 and there are only finitely many possibilities forr , namely, 2≤ r ≤ 9, this
is an absolute constant. The lemma is proved.

We now show how the theorem follows from the lemma. The point is that any relation
among the lifted pointsPi can be reduced modulop to get a relation with the same coeffi-
cients among the originalr pointsPp,i that were constructed at random in Step 3. However,
it is extremely unlikely thatr random points onE(Fp) will satisfy a linear relation with
coefficients less than a constant bound. In fact, using a pigeon-hole argument, one can show
that the smallest value of max|ni | that is likely to occur for the coefficients in a relation is
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of orderO(p1/r ). If the pointsPp,i in Step 3 do not satisfy a relation with coefficients less
than the bound in the lemma, then no amount of work with Mestre conditions is going to
enable one to lift them to dependent points.

To make the argument more precise, consider the map fromr -tuples of integers less than
C2 in absolute value toE(Fp) given by(n1, . . . ,nr ) 7→ n1P1,p + · · · + nr Pr,p. The image
is a set of≈ (2C2)

r randomly distributed points. The probability that the image contains 0
is approximately(2C2)

r /p. This proves the theorem withC0 = (2C2)
r .

Unfortunately, the certain failure of the algorithm for large primesp does not rule out its
practicality forp of an “intermediate” size, such asp ≈ 1050. After examining about 10000
curves, Silverman [27] was able to bound the constantC3 in Lang’s conjecture as follows:
C3 < (2000)−1.8 That circumstance alone contributes a factor of at least 2000(r−1)/2 to the
constantC2 in the lemma, and at least 2000r (r−1)/2 to the constantC0 in Theorem 4.1. In
any case, it is now clear that Silverman was correct to chooser > 2. If r were equal to
2 (as in the “simplified version” in §3.1), thenC2 could be chosen much smaller, and our
theorem would apply top of more moderate size.

This situation is very unusual. We know, subject to various reasonable conjectures, that
for sufficiently largep the xedni algorithm must be repeated at leastO(p) times (with
different choices ofr points in Step 3) in order to find a discrete logarithm. In other words,
asymptotically it is far slower than square-root attacks. However, because of the constants
involved, this result does not necessarily imply that the algorithm is inefficient forp in the
range that arises in practical cryptography.

4.1. Estimate of the Constant in Theorem 4.1

In order to get a very rough estimate for the constantC0 in Theorem 4.1, we shall make the
following assumptions:

• The constantC3 in Lang’s conjecture is no less than 1/10 of the upper bound in [27],
i.e.,C3 ≥ 0.00005.

• For r = 2,3,4,5,6, one uses the Weierstrass form of the equation of the elliptic curve
with 7 variable coefficients. We suppose that the ratio of length of the coefficients to
length of the coordinates of ther points is given by a formula derived from Siegel’s
Lemma, as in Appendix J of [33], namely, 1+ 3r/(7− r ). We further suppose that the
length of the discriminant is 12 times the length of the coefficients.

• For r = 7,8,9, one uses the general equation of a cubic, which has 10 variable
coefficients. We suppose that the ratio of lengths of coefficients to coordinates is now
1+3r/(10−r ) (see Appendix J of [33]). In accordance with computations of Silverman
(see Appendix C of [33]), we also assume that the length of the discriminant is 110
times the length of the coefficients.

• The curves overQ have no nontrivial torsion points, as one expects to happen in the
vast majority of cases.
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We now use the bound in the proof of Theorem 4.1:

C0 = Tr 2r (r−2)(r−3)/2

3r (r−1)(r−2)/4
r r (r−1)(Vball(r − 1))r (C1C3)

−r (r−1)/2,

whereT , C1, andC3 are determined according to the four assumptions above, i.e.,T = 1,
C3 = 0.00005 andC1 = 12(1+ 3R/(7− R)) or 110(1+ 3r/(10− r )) for r = 2,3,4,5,6
andr = 7,8,9, respectively. Here is the result:

r very rough value forC0

2 104

3 1012

4 1023

5 1038

6 1054

7 1065

8 1084

9 10100

We conclude that forp ≈ 1050, Theorem 4.1 rules out the use of the algorithm withr ≤ 5,
but not necessarily withr = 6,7,8,9. Nevertheless, in our experimental work, where the
primes were much smaller, we tookr = 2,3,4 in order to investigate the probability of
dependence, the effect of reverse-Mestre conditions, and other issues.

Note that whenp ≈ 1050 we can expect to be working with elliptic curves overQ whose
discriminants have at least 10000 decimal digits whenr = 6 and 150000 digits whenr = 9.
This obviously casts doubt on the feasibility of the computations in the algorithm. We shall
explore the practicality question in more detail in the next section.

Remark 5. Our estimate forC1 might be too high, because sometimes one can obtain
smaller coefficients and discriminants using lattice-basis reduction and other methods. On
the other hand, the value we are using forC3 is almost certainly too low; so it is reasonable
to hope that our value for the productC1C3 is about right.

5. Empirical Analysis in the Practical Range

To get a practical estimate of the probability of success of the xedni algorithm, we did
several experiments, including an implementation of the algorithm itself. All experiments
were carried out using the computer algebra systems LiDIA [14] and SIMATH [38]. We
began with a couple of preliminary computations. The purpose of this was to obtain some
insight into which parameters have an impact on the probability of dependence. Our strategy
and the size of parameters were chosen with the aim of producing a significant number of
dependencies. We tried to keep the size of the curve coefficients, and hence the size of the
discriminant, as small as possible. We worked withr = 2,3 and 4 points through which
the curve was made to pass, and we did not impose any reverse-Mestre conditions. The data
obtained through these experiments already suggested that most likely the xedni algorithm
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has a negligible probability of success. However, to be more confident of this statement,
we implemented the algorithm. It turned out that the probability of success was small even
for 8-bit primes.

5.1. A First Approach

5.1.1. The Experiment

For each valuer = 2,3,4, 200000 curves were generated as follows. First,r affine points
P1, . . . , Pr , Pi = (xi , yi ) were randomly selected with integers|xi | and |yi | bounded by
40 whenr = 2 and by 30 whenr = 3,4, such that the points had pairwise distinctx-
coordinates and none of them was the point at infinity. The points were discarded if any
three of ther points(r ≥ 3)were collinear. Note that if three pointsP, Q andRare collinear
and E is an elliptic curve passing through these points, thenP + Q + R = O ∈ E(Q),
independently ofE. Second, the five coefficientsai (i = 1,2,3,4,6) of a curve in standard
Weierstrass form (witha0 = a′0 = 1) were selected so that the curve passed through ther
points and the coefficients were small. If there was no solution with integer coefficients,
the points were discarded. Third, the curve (and points) were discarded if the curve had
the samej -invariant as an earlier curve. Fourth, the same was done if any of ther points
were torsion points or if the curve had nontrivial 2-torsion. Finally, in the casesr = 3,4 if
the discriminant was greater than 280, that case was also discarded. The reason for this was
that in preliminary experiments we were unable to find a single case of dependency with
discriminant greater than 272, and we wanted to avoid a lot of fruitless computation.

In all cases we computed the discriminant and the number of mod-l points for 7≤ l ≤ 97.
A 2-descent (see [33], Appendix D) was used to check dependence. When the points were
dependent, the dependency relation with smallest coefficients was determined.

5.1.2. Results

Among the 200000 examples considered for eachr = 2,3,4, we found 2895, 21165 and
10698 dependent cases, respectively. For each value ofr = 2,3,4 and each bit-length of
the discriminantD, the proportion of dependent cases (i.e., the probability of dependence)
was tabulated and compared with various fractional powers of the discriminant. The data
suggest that whenr = 2,3,4 the probability of dependence is bounded, respectively, by
5|D|−1/4, 66|D|−1/4, 322|D|−1/4. Some explicit results forr = 4 are given in Table 1.
Here columnA is the bit-length of the discriminant; to keep the table small, we restrict
ourselves to listing the data for discriminants of bit-length 5k, k ≥ 1, and for the largest
discriminants. ColumnB is the number of example curves having discriminant of bit-
length A. ColumnC is the number of these curves for which the four points are dependent.
The fourth column is the proportionC/B of dependencies. The last three columns show the
values ofRe = 2A/eC/B, wheree = 3,4,5. Thus,Re is approximately equal to thee-th
root of the discriminant times the fraction of examples where the points were dependent:
Re ≈ |D|1/e · C/B.
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Table 1. r= 4: probability of dependence.

length(|D|) # curves # curves #dep.
total# R3 R4 R5

w.dep.pts.

10 4 4 1 10.08 5.66 3.17
15 10 10 1 32 13.45 5.66
20 112 106 0.946 96.15 30.29 9.54
25 446 352 0.789 254.56 60.07 14.17
30 991 535 0.54 552.82 97.72 17.28
35 1433 411 0.287 932.42 123.48 16.35
40 1879 299 0.159 1642.4 162.95 16.17
45 2409 194 0.081 2638.85 196.13 14.58
50 3079 133 0.043 4493.75 250.22 13.93
55 3725 65 0.017 5763.29 240.41 10.03
60 4417 17 0.004 4035.72 126.12 3.94
65 5100 4 0.001 2611 61.13 1.43
70 5754 2 0.0003 3673.61 64.43 1.13

71–72 12150 2 0.0002 2761.68 43.15 0.67
73–80 52156 0 0 0 0 0

The average value of
∑

7≤l≤97
al log l

l for r = 2,3,4 was, respectively,−4.401,−6.163,
−8.108 for all curves and−2.227,−4.336,−6.597 for the dependent cases. In other words,
very roughly it was equal on average to−2(rank of curve).

We also looked at the reverse-Mestre conditions for 7≤ l ≤ 97. Of the 22 values
of l , no curve satisfied more than 3 reverse-Mestre conditions. The dependent cases had
significantly more likelihood than the independent cases of satisfying these conditions—but
still not a large probability. Whenr = 4, for example, 17 out of the 10698 dependent cases
(about 0.16%) satisfied 2 or 3 reverse-Mestre conditions, whereas only 156 out of the 189302
independent cases (about 0.08%) did. In both cases, this proportion was far less than one
expects for a random curve. The reason is that, since the curves were constructed to pass
throughr points, they generally had higher rank, and hence in most cases more mod-l points,
than an average curve. We also compiled statistics on the number of ‘reverse-Mestre+1’ and
‘reverse-Mestre+2’ conditions (i.e.,Nl is l+1−[2

√
l ]+1 orl+1−[2

√
l ]+2, respectively);

the results were similar to what we found for the pure reverse-Mestre conditions. For
example, whenr = 4, out of the 10698 dependent cases there were 83 cases when 2 or 3
reverse-Mestre+1 conditions held (none with> 3), and there were 148 cases when 2 or 3
reverse-Mestre+2 conditions held (none with> 3). Out of the 189302 independent cases
there were 703 cases with 2 or 3 reverse-Mestre+1 conditions (none with> 3) and 1555
with 2 or 3 reverse-Mestre+2 conditions (2 with> 3).

Most remarkably, the coefficients in the dependency relations were very small. When
r = 2, over 98% of the coefficients were 4 or less in absolute value, and no coefficient was
greater than 8. Whenr = 3, over 99.75% of the coefficients were 3 or less in absolute
value, and no coefficient was greater than 13. Whenr = 4, over 99% of the coefficients
were 2 or less in absolute value, and no coefficient was greater than 8. This is much less
than the theoretical boundC2 derived in the previous section.
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5.2. A Second Approach

While doing experiments similar to those described above, we found an interesting effect
when we tried to mix our bounds on the coordinates. Namely, at one point (withr = 3) we
tried to add to our sample 100000 examples for which the absolute values of the coordinates
of the 3 points were between 31 and 50 (rather than between 0 and 30). The large proportion
of cases that led to large discriminants were discarded, leaving only the examples with
smaller-than-average discriminants. In that situation there was a significant increase in the
probability of dependence (roughly by a factor of 4) for fixed bit-length of the discriminant.
This suggests that the probability depends not only on the size of the discriminant, but also
on how this size relates to the logarithmic heightsĥ(Pi ) of the lifted points. In particular, the
probability of dependence seems to be significantly greater for cures whose discriminants
are much smaller than the median.

In a second series of experiments we took advantage of this phenomenon. Here we also
were interested in the distribution of the discriminants of curves forced to go throughr
random points whose coordinates were chosen to lie within certain ranges.

5.2.1. The Experiment

In this series of experiments we worked withr = 4 points whose coordinatesxi , yi were
chosen so that

Bk ≤ |xi | < Bk+1 and B′k ≤ |yi | < B′k+1, i = 1,2,3,4,

where

Bk = 6k and B′k = [(6k)3/2].

Initially, we planned to takek = 1, . . . ,10, but we ended up working withk = 1–45, 51–
57, 101–110, 150–157, 200–204, 250, 251, 252, 1000, 2100, 3000. For each such value of
k, 100000 curves were generated in the way described above. Besides the modified bounds
on the coefficients, the only difference was that we used the homogeneous Weierstrass form
with 7 coefficients, computed an LLL-reduced basisEv1, . . . , Ev7−r of the kernel of the matrix
B(P1, . . . , Pr ), and then chose a solution vectorEu from the set{e1Ev1 + · · · + e7−r Ev7−r :
ei = 0,±1} such that the discriminant of the corresponding curve is minimal. For each
k, out of the 100000 curves only the 1000 with smallest discriminant were examined for
dependency. Thus, about 8 million curves were generated, and 1% of them were examined
for dependency. For eachk, we also looked at the distribution of the 100000 discriminants.

5.2.2. Results

The distribution of the bit-length of the discriminant was very similar for different ranges
of k. It was not exactly a normal distribution—in particular, the mode was a few bits larger
than the median, which was a few bits larger than the mean. The ratio of the standard
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Table 2.The coefficients of the dependency relations.

k # curves # depend. 0 1 2 3 4 5 6 7

1–30 30000 9893 7591 29536 2060 279 74 24 6 2
31–45 15000 2019 1084 6805 173 13 1 — — —
51–57 7000 773 385 2651 54 2 — — — —

101–110 10000 909 296 3311 27 2 — — — —
150–157 8000 625 174 2311 14 1 — — — —
200–204 5000 623 87 2395 10 — — — — —
250–252 3000 169 42 631 3 — — — — —

1000 1000 27 2 106 — — — — – —
2100 1000 41 3 161 — — — — — —
3000 1000 36 1 143 — — — — — —

deviation to the mean was 0.22 for allk ≥ 11 and between 0.25 and 0.23 for 1≤ k ≤ 10.
As a function ofk, the median was very close to 23 log2 k + 30. The largest bit-length
of discriminant for the bottom 1% was consistently 48% or 49% of the median bit-length,
i.e., about 11.5 log2 k + 15. For example, fork = 101 the smallest 1% of the curves had
discriminants of bit-length between 22 and 92, while fork = 51 the range was 24 to 81
bits, and fork = 3000 the range was 63 to 151 bits.

In general, there was a much greater probability of dependence than in the previous
experiment. For example, fork = 101, . . . ,110, the probability of dependence was about
30% for discriminants of≤ 40 bits, it was about 5% for discriminants in the 60-bit range,
and it dropped off gradually to about 1% for discriminants of> 90 bits. For the larger
values ofk, where most of the smallest 1% of discriminants had more than 100 bits, we
also found many dependent cases. For example, fork = 3000 there were 35 dependent
cases among the 998 curves with discriminants of> 100 bits, the largest of which was for a
151-bit discriminant. This contrasts dramatically with the earlier data, when the coordinates
of the Pi were much smaller and the discriminants of> 60 bits came from the middle and
high range of discriminants; in that case we did not find a single dependency among the
vast number of cases of discriminant> 272. Moreover, the probability of dependence was
no longer bounded byconst· |D|−1/4. Hence, having smaller than expected discriminant
helps force the points to be dependent.

However, when we examined the sizes of the coefficients in the dependency relations,
we realized that it was the very small size of these coefficients, rather than the small
probability of dependence for large|D|, that would be the most serious obstacle to the
xedni calculus. These coefficients tended to be as small or smaller than in the previous
experiment. Moreover, the chance of finding a dependency coefficient other than 1,−1,
0 drops significantly as the discriminant grows. For example, fork > 32 we encountered
no coefficients of absolute value greater than 3. In Table 2 we give the distribution of the
dependency coefficients. The first column is the range ofk-values; the second column is
the number of curves examined (i.e., 1000 times the number ofk-values in the range); the
third column is the number of dependent cases. The column labeledi is the number of
dependency coefficients of absolute valuei (thus, the sum of all of these columns is equal
to 4 times the third column).
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Out of the 27 dependent cases fork = 1000, 17 relations were of the formP1 + P2 =
P3 + P4. For k = 2100, 33 out of 41 relations were of this form, and fork = 3000 this
was the case for 31 out of 36 relations. Note that the probability of getting this relation is
simply the probability that, when one passes a curve through the four points, it also passes
through the point of intersection of a line through two of the points with the line through the
other two. Although there is a significant chance of this happening even whenk is large,
this type of relation with coefficients±1 is not useful for solving the ECDLP, where the
coefficients will be large.

We also wanted to see if the data could have been affected by the particular way we
generated the points (especially, the narrow range of|xi | and the fact that|yi | was so close
to |xi |3/2). So we returned to a range roughly similar tok = 250, but this time with
372 = 1369≤ |xi | < 1600, 373 = 50653≤ |yi | < 64000 and also with 1369≤ |xi |,
|yi | < 1600. In each case we generated 100000 examples and examined the bottom 1%.
This time the discriminants were much larger than before (up to 162 bits in the first case
and up to 125 bits in the second case), presumably because LLL had been able to find
much smaller coefficients when|xi |3 was very close to|yi |2. Out of 1000 curves there
were, respectively, 14 and 50 dependencies, of which ten and eight were of the form
P1+ P2 = P3+ P4. Once again there were no coefficients other than 1,−1, 0.

5.3. Preliminary Conclusions

So far, our experiments showed the following. First, the probability of dependence drops
off with increasing bit-length of the discriminant, but this drop-off depends on more than
just the bit-length. Another factor is the ratio of the actual size of the discriminant to the
expected size.

Second, reverse-Mestre conditions are more likely to be satisfied in the dependent cases
than in the independent cases. What is the probability of dependence given that reverse-
Mestre conditions hold for a few small primes? Such data cannot be extracted from our
experiments. For example, in the first experiment (with 200000 curves) and in the second
experiment (with 10000 curves of relatively small discriminant andk = 101–110) we
checked for reverse-Mestre conditions and reverse-Mestre+1 conditions forl = 7, 11 and
13. We found that in none of the cases, dependent or independent, were any two such
conditions satisfied simultaneously.

Third, the small sizes of the dependency coefficients seemed to cast doubt on the practi-
cality of the xedni algorithm. At this point we did not yet have data reflecting the situation
of ECDLP, where we deal with points whose smallest relation is necessarily fairly large.
What is the probability thatP1, . . . , Pr are dependent, given that we know a priori that any
relation they satisfy must have moderately large coefficients?

5.4. Experiments with the Xedni Algorithm

To answer the questions raised above, we implemented the xedni algorithm. The size of the
parameters was chosen so that we had a reasonable chance of finding some dependent cases.
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For p = 17 and forp = 67, we did three different experiments, which can be classified as
follows: (A) no reverse-Mestre conditions imposed; (B) reverse-Mestre conditions imposed
for two small primes whose productM is of approximately the same size asp; (C) instead
of p work with p′ ≈ Mp, with no reverse-Mestre conditions imposed but withp′ taken to
be of the same magnitude as the productMp in (B).

In the context of an actual ECDLP, this means that both Experiments A and B would
be used to solve the same ECDLP but with different strategies. That is, the reverse-
Mestre conditions in Experiment B would presumably contribute to a greater likelihood of
dependency, but at the expense of much larger discriminants (which would work against
dependency). Experiment C, on the other hand, would be used to solve an unrelated
instance of ECDLP, but the discriminants in Experiment C are of similar size to those in
Experiment B. Comparing Experiments A and C with Experiment B, we should be able
to judge whether the reverse-Mestre conditions are helpful enough to compensate for the
larger discriminants.

Let us describe Experiment B withp = 67 in detail. We choseap = 0, bp = 28. Then
the curvey2 = x3 + apx + bp overFp hasN = 73 points. We choseP0 = (1,30) as a
generator forE(Fp). Next, we choseM = 77= 7 · 11, and we chosePM,i , i = 1,2,3,4,
to be the four points(14,±15), (9,±19) on the mod-M curvey2 = x3 + aM x + bM with
aM = 1, bM = 8. Note that the numbers of points mod 7 and 11 are, respectively, 5 and
6. In each case theB-matrix has rank 4; and since the numbers of points for differentl are
relatively prime there is no worry about incompatibility and forced independence. Using
the Chinese Remainder Theorem, we then computea, b with −77p/2 < a,b < 77p/2
to be congruent toap,bp modp and congruent toaM ,bM mod 77. Hencea = 1541 and
b = 162. Then the steps 1–4 below are repeated 100000 times.

1. For any vectorn ∈ F4
N define‖n‖2 to be

∑
i n2

i , where the coordinatesni of n are taken
in the interval−N/2< ni < N/2. Fori = 1,2,3,4 setPp,i = µi P0, where the vector
µ ∈ F4

N is chosen so thatµ1 = 1,µi 6≡ 0 modN, and‖n‖2 ≥ 5 for all nonzero vectors
n ∈ F4

N orthogonal toµ. This means that we do not allow thePi to satisfy a relation
with all coefficients 0,1,−1.

2. For eachi = 1,2,3,4 use the Chinese Remainder Theorem to choose(xi , yi ) to be
congruent to the coordinates ofPp,i modp and to those ofPM,i mod 77. Now choose
Pi = (Xi ,Yi , Zi ) in projective coordinates by finding a short vector in the lattice
generated by the columns of the matrixxi 77p 0 0

yi 0 77p 0
1 0 0 77p


subject to the condition thatZi is not divisible by 7, 11, orp.

3. Solve for small integersui such that the curveE(Q) with equation

(1+77pu1)Y
2Z+77pu2XY Z+77pu3Y Z2 = (1+77pu4)X

3+77pu5X2Z

+ (a+77pu6)X Z2+(b+77pu7)Z
3
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passes throughPi = (Xi ,Yi , Zi ), i = 1,2,3,4, and has minimal discriminant. Here
we use the techniques described in Steps 7 and 9 and Appendix B of [33], including the
Havas-Majewski-Matthews Hermite normal form algorithm [7].

4. Finally, check whether thePi are dependent. In case of dependency, compute the
dependency relation with smallest coefficients.

Experiment A differs from Experiment B only in thatM = 1. For the corresponding
Experiment C, we chosep = 5167,ap = 2462,bp = 1260, andP0 = (2,946). The curve
y2 = x3+ apx + bp overFp hasN = 5153 points.

For Experiments A and B withp = 17, we tookr = 2 and choseap = bp = 2. Then the
curvey2 = x3+ apx+ bp overFp hasN = 19 points. We choseP0 = (3,1) as generator.
We worked withM = 15= 3 · 5, and chosePM,1 andPM,2 to be the two points(5,±2) on
the mod-M curvey2 = x3+ x2+ x+14. The number of points is 3 both mod 3 and mod 5.
The fact thatPl ,1 = −Pl ,2 for bothl = 3,5 guarantees that we do not force the lifted points
to be independent. Chinese Remaindering gives coefficients−119, 121 and 104. Hence,
in Experiment A we work with the curvey2 = x3+ 2x+ 2 mod 17, while in Experiment B
we work with the curvey2 = x3 − 119x2 + 121x + 104 mod 255. For Experiment C we
chosep = 257,ap = 88, bp = −41, andP0 = (2,20). The curvey2 = x3 + apx + bp

overFp hasN = 263 points. Note that since we work with only two points, the vectorsn
andµ of Step 1 above are vectors inF2

N . The only conditions imposed onPp,i (i = 1,2)
are that they are not the point at infinity andPp,1 6= ±Pp,2.

5.4.1. Results

Among the 6 series of 100000 executions of Steps 1–4 above, only in 3 series did we
obtain any dependencies. This was in Experiment A withp = 17 andp = 67, and in
Experiment B withp = 17. Details are shown in Table 3.

The data show that, given an instance of the ECDLP—i.e., a fixed value ofp—we are
more likely to produce dependent cases if we do not impose reverse-Mestre conditions.
When we work with discriminants of approximately the same size—i.e., with variablep
but fixed size ofMp—the different outcomes of Experiment B whenMp = 15 · 17 and
Experiment C whenMp = 1 · 257 might be interpreted as evidence that imposing reverse-
Mestre conditions has a significant impact. However, the three relations in Experiment B
are all of the formP1 = 2P2 or P2 = 2P1. Notice that once one of the two points modp
is chosen, there areN − 3 possibilities for the other one, and the probability that the two
points satisfy a dependency with coefficients≤ 2 is 2/(N−3) = 1/8 in Experiment B and
4/(N−3) = 1/65 in Experiment C. (Note that in Experiment B the coefficientsn1,n2 must
satisfy the congruencen1−n2 ≡ 0 (mod 3), becausePl ,1 = −Pl ,2 andNl = 3 for l = 3,5;
that is why the numerator aboveN − 3 is 2 rather than 4 in Experiment B.) Our experience
has been that it is much more likely that a relation of the formPp,1 ± 2Pp,2 = 0 can be
lifted than that a relation with larger coefficients can be lifted. Thus, the greater likelihood
of dependency in Experiment B than in Experiment C might have little or nothing to do
with the reverse-Mestre conditions.9
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Table 3.Experiments A, B, C (100000 examples of each).

Dmin Dmax Dav # dep. dependent cases
Dmin Dmax Dav

A
p = 17
M = 1

17 bits 131 bits 73 bits 317 23 bits 91 bits 61 bits

B
p = 17
M = 15

41 bits 273 bits 182 bits 3 140 bits 151 bits 144 bits

C
p = 257
M = 1

40 bits 255 bits 167 bits 0 — — —

A
p = 67
M = 1

57 bits 257 bits 148 bits 153 59 bits 170 bits 114 bits

B
p = 67
M = 77

289 bits 612 bits 421 bits 0 — — —

C
p = 5167
M = 1

269 bits 581 bits 394 bits 0 — — —

Table 4.Experiments A: coefficients.

# deps. 0 1 2 3 4 5 6 7

p = 17,r = 2 317 — 311 304 16 2 — — 1
p = 67,r = 4 153 232 221 155 2 1 — 1 —

Looking at the relations in the Experiments A, we find that the great majority have
coefficients 0,±1,±2. The sizes of the coefficients are shown in Table 4. As in Table 2,
the column labeledi shows the number of dependency coefficients of absolute valuei . We
see that the coefficients are very small.

Furthermore, 301 out of the 317 relations forp = 17 were of the formP1 = ±2P2 or
2P1 = ±P2. Out of the remaining 16 relations, only 6 have both coefficients larger than
1. For p = 67, 97 out of the 153 relations were of the formPi = ±2Pj , 33 were of the
form Pi ± Pj = 2Pk, and 9 were of the formPi ± Pj ± Pk = 2Pl . Out of the remaining 14
relations, six have two coefficients larger than one.

6. Conclusion

Xedni calculus is impractical forp in the range used in elliptic curve cryptography. In the
first place, the basic properties of the canonical logarithmic height, along with a pigeon-
hole argument, show that the coefficients in a dependency relation among the lifted points
are bounded by an absolute constant. This implies an asymptotic running time of at least
O(p). In a sense, xedni fails asymptotically for much the same reason that index calculus is
infeasible (see [21, 34]). In the second place, even if liftings exist with dependency among
the points, the probability of finding such a lifting decreases as the discriminant grows, and
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it becomes very low by the timep reaches the practical range. In the third place, empirical
data show that the theoretical bounds on the size of the dependency coefficients are far too
generous compared to what happens in practice; and for high discriminants it is virtually
impossible to find dependencies where the coefficients cannot be taken to be of trivial size
(usually±1). Finally, although, in the absence of other considerations, the reverse-Mestre
conditions do increase the likelihood of dependency, they also cause the discriminant to
increase substantially, and so most likely the net effect is to do more harm than good.
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Notes

1. At about the same time, some similar ideas were developed independently in Korea [4].

2. We’re assuming thatE has “good reduction” atl , i.e., thatl does not divide the denominators of the coefficients
or the discriminantD of the curve. For brevity, we shall not discuss the modifications needed for the “bad”
primesl .

3. Whenn = l is prime, thenan is our earlieral ; for compositen it is not hard to expressan in terms ofal for
l | n.

4. In particular,N|D, and bothN andD have the same prime divisors.

5. It would not make much difference if, instead, the logarithmic height were defined as log max(|a|, |b|, |c|, |d|),
wherey = c/d in lowest terms, or even as log2|abcd|, which really is (essentially) the number of bits needed
to write downP.

6. Since it is customary to writeai for the coefficients of the general Weierstrass equation, we shall also adhere to
this notation and hope that it does not lead to confusion with the use ofal (l prime) to denotel + 1− #E(Fl ),
which is also customary. Also note that usually one takesa0 = a′0 = 1 anda1,a2,a3,a4,a6 ∈ Q; however,
we want integer rather than rational coefficients, so it is useful to introducea0 anda′0.

7. Roughly speaking, this condition says that the discriminant of the lifted curve is greater than theC1-th power
of the maximum absolute value of the numerators and denominators of the coordinates of the lifted points,
for some absolute constantC1 > 0. This is a reasonable assumption, since the discriminant is a polynomial
function of the coefficients of the curve, and the coefficients tend to grow proportionally to a power of the
integer projective coordinates of the points through which the curve must pass.

8. On the other hand, it is known (see [8, 27]) that in order to get a very small value ofC3, it is necessary
that the discriminantD be divisible by many primes to fairly high powers. However, from the way they are
constructed, the xedni curves tend to have discriminants that are square-free or almost square-free.

9. There is a reason unrelated to the heuristics of the Birch–Swinnerton-Dyer Conjecture why, among the condi-
tions that one might impose modulol , l |M , the reverse-Mestre conditions are the ones that are most likely to
produce dependencies. Note that the mod-l conditions lead to congruences that the dependency coefficients
must satisfy. These congruences are likely to be more restrictive ifNl = #E(Fl ) is larger. For example, we
saw that the reverse-Mestre conditions in Experiment B led only to the constraint thatn1 − n2 ≡ 0 (mod 3),
which has a small nontrivial solutionn1 = 1, n2 = −2. Suppose that we had instead chosen our mod-l curves
and points so thatN3 = 5, N5 = 7 (which are “average” rather than reverse-Mestre values) andP3,2 = 2P3,1,
P5,2 = −P5,1. Then any dependency coefficients must satisfyn1 + 2n2 ≡ 0 (mod 5), n1 − n2 ≡ 0 (mod 7).
One can check that the smallest (in the sense of‖n‖) nonzero solution to these congruences isn1 = 3,n2 = −4.
It is far, far harder to find dependencies with bothn1,n2 ≥ 3 than it is to find dependencies withn1 = 1,
n2 = −2.



ANALYSIS OF THE XEDNI CALCULUS ATTACK 63

References

1. B. Birch and H. P. F. Swinnerton-Dyer, Notes on elliptic curves I and II,J. Reine Angew. Math., Vol. 212
(1963) pp. 7–25 and Vol. 218 (1965) pp. 79–108.

2. B. Birch and H. P. F. Swinnerton-Dyer, Elliptic curves and modular functions. In B. Birch and W. Kuyk
(eds.),Modular Functions of One Variable IV(Lect. Notes in Math., Vol. 476), Springer-Verlag, 1975,
pp. 2–32.

3. J. W. S. Cassels, Diophantine equations with special reference to elliptic curves,J. London Math. Soc.,
Vol. 41 (1966) 193–291.

4. J. H. Cheon, S. G. Hahn, and H. J. Kim, Analogue of the index calculus for elliptic discrete logarithm,
preprint.

5. J. Coates and A. Wiles, On the conjecture of Birch and Swinnerton-Dyer,Invent. Math., Vol. 39 (1977)
pp. 223–251.

6. R. Greenberg, On the Birch and Swinnerton-Dyer conjecture,Invent. Math., Vol. 72 (1983) pp. 241–265.
7. G. Havas, B. Majewski, and K. Matthews, Extended GCD and Hermite normal form algorithms via lattice

basis reduction,Experimental Math., Vol. 7 (1998) pp. 125–136.
8. M. Hindry and J. H. Silverman, The canonical height and integral points on elliptic curves,Invent. Math.,

Vol. 93 (1988), 419–450.
9. N. Koblitz, Elliptic curve cryptosystems,Math. Comp., Vol. 48 (1987) pp. 203–209.

10. N. Koblitz,Introduction to Elliptic Curves and Modular Forms, 2nd ed., Springer-Verlag, 1993.
11. N. Koblitz,Algebraic Aspects of Cryptography, Springer-Verlag, 1998.
12. S. Lang,Elliptic Curves: Diophantine Analysis, Springer-Verlag, 1978.
13. S. Lang,Fundamental of Diophantine Geometry, Springer-Verlag, 1983.
14. LiDIA Group, Technische Universit¨at Darmstadt, Darmstadt, Germany,LiDIA—A Library for Computa-

tional Number Theory, Version 1.3, 1997.
15. D. W. Masser, Specializations of finitely generated subgroups of abelian varieties,Trans. Amer. Math. Soc.,

Vol. 311 (1989) pp. 413–424.
16. B. Mazur, Modular curves and the Eisenstein ideal,Inst. HautesÉtudes Sci. Publ. Math., Vol. 47 (1977)
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