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ABSTRACT
Dynamic particle swarm optimization (PSO) problems are
generally characterized by the exhaustively examined issues
of the changing location of optima, the changing fitness of
optima, and measurement noise/errors. However, the chal-
lenging issue of continuously changing problem dimensional-
ity has not been similarly examined. Given that in anytime
dynamic resource allocation it is necessary to maintain a
high quality solution, we argue that, rather than restarting
the PSO algorithm, a more appropriate approach is to de-
sign an algorithm that robustly handles changing problem
dimensionality. Specifically, we propose an indirect particle
encoding scheme specifically designed for a dynamic multi-
dimensional PSO algorithm for proportional fair constrained
resource allocation. This PSO algorithm is implemented
for the proportional fair allocation of power and users to
channels within a simulation of an Orthogonal Frequency-
Division Multiple Access (OFDMA) wireless network with
mobile users switching cells as they traverse the simulation
environment. The proposed PSO algorithm is evaluated us-
ing simulations, which demonstrate the ability of the pro-
posed indirect encoding scheme to maximize the overall pro-
portional fair optimization goal, without unfairly penalizing
the individual components of the solution related to newly
introduced problem dimensions.

Categories and Subject Descriptors
G.1.6 [Optimization]: Constrained optimization;
C.2.1 [Network Architecture and Design]: Wireless com-
munication

General Terms
Algorithms, Performance, Experimentation

Keywords
Dynamic Particle Swarm Optimization, Multi-Dimensional,
Constrained Resource Allocation, Proportional Fair, OFDMA
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1. INTRODUCTION
Real-world optimization problems are often dynamic in

nature, due to alterations in the search space resultant from
environmental or system changes. These changes require op-
timization to be continuous in some manner, through either
restarting the optimization, or adapting the current opti-
mization attempt on the fly. Depending on the application,
restarting the optimization attempt is often undesirable due
to the loss of discovered information and reduplication of
effort. This is especially true, if the search space of the new
problem is highly similar to that of the previous problem.
However, the method of adapting the previous optimization
attempt faces the challenge that the new optimization may
remain stuck in a previously found optimum and therefore
be unable to transition to find new local optima.

In particle swarm optimization (PSO) for dynamic opti-
mization problems there are a number of sources of change
for the search space. These include noise, location of op-
tima, changes in fitness of optima, and changes in problem
dimensionality. Noise in the problem is generally the re-
sult of stochastic influences on the fitness function, such as
measurement or discretization errors [15]. Nickabadi et al.
observed the following types of changes in optima: Type I as
a change in optimum location, Type II as a change in opti-
mum fitness with a fixed location, and Type III as a change
of both optimum fitness and location [13]. These changes are
subject to temporal severity (change occurs quickly) and/or
spatial severity (local optima move a large distance in the
search space as defined by the fitness function). These first
three problems have been addressed in a wide variety of man-
ners depending on the optimization problem’s requirements,
while the problem of dimensionality has not been explored
to the same extent.

The problem of dimensionality changing has been exam-
ined by Kiranyaz et al. [9]. However, Kiranyaz et al. for-
mulate the multi-dimensional problem with the range of di-
mensionality being a component of the search space. This
means that the algorithm searches for both the optimal so-
lution within a number of dimensions and which number
of dimensions is optimal. However, multi-dimensionality is
not always a component of the current working optimization
search space. For example, the search space may be associ-
ated with a shared resource allocation problem for a certain
number of agents. If new heterogeneous agents and their
unknown constraints and relationship to current agents are
entered into the search problem during optimization, then
the dimensionality of the problem changes. More impor-
tantly, this possibility cannot be represented within the pre-
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vious search space and therefore Kiranyaz et al.’s method
does not apply.

The challenge addressed in this paper is to dynamically in-
corporate new search space dimensions by adapting the cur-
rent PSO optimization attempt. This challenge is addressed
for the problem of proportional fair allocation of shared re-
sources in a cellular network with mobile users. The most
common solution for the majority of dynamic search space
changes is to maintain diversity within the PSO swarm’s
population such that the algorithm does not get trapped
in local optima. However, in constrained proportional fair
resource allocation there is a high dependency between the
new dimensional values and current values, due to their re-
lationship sharing a constrained resource (e.g. transmission
power). This means there is high spatial severity and de-
pending on the time requirements, temporal severity, in the
impact of dimensional changes on the locations of local op-
tima.

This paper develops a continuous dynamic PSO solution
for the problem of changing dimensionality within optimiz-
ing the proportional fair distribution of shared and con-
strained resources in a cellular network employing OFDMA
[18]. This solution takes the challenge of high dependency
between new/existing values and through a unique indirect
encoding method turns it into an advantage for robustly
handling the changing dimensionality of the problem. More
particularly, through the indirect encoding the proportional
fair nature of the resource allocation problem is exploited to
enable the incorporation of new dimensional values grace-
fully into the particle and fitness function. This inclusion
is accomplished in a manner that the initial values of the
new dimensions represent a relatively good start in regards
to finding more optimal values. Importantly, the devel-
oped method allows for previous population and solution to
be utilized in the subsequent optimization within the new
search space, improving the quality and efficiency of the con-
tinuous optimization. Additionally, the PSO solution has
the anytime property, quickly finding a valid, yet approxi-
mate and possibly suboptimal, solution and improving on it
continuously for as long as required [26].

The rest of the paper is organized as follows. Section 2
examines the background of dynamic PSO. Then, Section 3
introduces the general method of continuous dynamic PSO
optimization for the problem of proportional fair constrained
resource allocation under the associated conditions of chang-
ing dimensionality. An application of this indirect encoding
to continuous wireless OFDMA resource allocation with mo-
bile users is outlined in Section 4. Numerical evaluations of
the general method, through the application to OFDMA re-
source allocation, are completed in Section 5 demonstrating
the ability of the method to robustly handle the changing
dimensions of the search space. The evaluations demon-
strate that the method is beneficial to the overall fitness of
the problem and the individual components of the fitness
related directly to the new dimensions. Finally, Section 6
concludes by examining the contributions of this paper and
possible future work.

2. DYNAMIC PSO
Particle swarm optimization is a stochastic optimization

method exploiting the concept of swarm intelligence [10].
The population for a PSO algorithm consists of a swarm of
particles where each n-dimensional particle corresponds to

a prospective solution within the current search space. In
each iteration, every particle is updated using its velocity,
its personal best position, and the swarm’s global best po-
sition, along with a random influence. The swarm’s global
best encourages convergence towards a global optimum, the
personal best influences convergence towards local optima,
and the randomness acts as a stochastic influence. In each it-
eration of the algorithm, every particle is evaluated using the
chosen fitness function in order to determine the particle’s
fitness value for its current location in the search space. If a
better particle position in the search space has been found,
then using this value the particle’s personal and global best
are updated.

Our PSO algorithm is designed to maintain a valid solu-
tion for a resource allocation problem at all times (anytime
property [26]). To accomplish this, each dimension is lim-
ited strictly within the chosen valid boundary values. Con-
sequently, the PSO consists of a swarm W of m particles
P of n dimensions in length, and the swarm’s global best
gbest = (gb1, ..., gbn) such that W = (P1, . . . , Pm, gbest).

Each particle P is a 3-tuple, Pi = (Xi, Vi, pbesti), con-
sisting of the particle’s position Xi = (x1, ..., xn), velocity
Vi = (v1, ..., vn), and personal best pbesti = (pb1, ..., pbn).
The particle’s dimensions are bounded as within a range
with xj , pbj , gbj ∈ [0, 1], and velocity is bounded as vj ∈
[−0.1, 0.1].

The PSO algorithm begins with a swarm W consisting
of particles with randomly initialized positions and veloci-
ties. For each next iteration k+ 1 from the current iteration
k, each particle is updated according to the following equa-
tions:

V k+1
i = w·V ki +c1 ·rand()·(pbi−Xk

i )+c2 ·rand()·(gbi−Xk
i ).

The velocity is changed based upon the previous velocity
V ki and an inertial weight w, as well as the difference be-
tween the current position and the particle’s personal best
influenced by a learning factor c1 and a random number in
the range [0, 1], and the difference between the current po-
sition and the particle’s neighborhood best influenced by a
learning factor c2 and a random number in the range [0, 1].
This new velocity is limited such that each vj ∈ V k+1

i is
bounded by vj ∈ [−0.1, 0.1] with excess velocity beyond the
bounds being discarded.

Next, the position is changed using the new velocity as
described by the following equation:

Xk+1
i = Xk

i + V k+1
i .

This new position is limited such that each xj ∈ Xk+1
i

is bounded by xj ∈ [0, 1] with excess dimensional values
beyond the bounds being discarded.

The basic PSO algorithm, as described by Eberhart et al.,
is unsuited for dynamic problems. Issues such as outdated
memory as the search space changes (as stored in the global
best of the swarm and personal best of the particles), lack of
search space change detection, and the loss of diversity over
time limit this base PSO algorithm to static problems [3].
Outdated memory is addressed in this paper using the com-
mon method of re-evaluating the fitness function of the per-
sonal and global best as the search space changes, such as
in [8]. A common solution for search space change detection
is sentry particles [6]. However, this is unnecessary in this
paper as we know the problem changes quickly and contin-
uously and therefore our solution requires no such trigger.
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Diversity loss is a more complex challenge and the cho-
sen technique for addressing it relies on the circumstances
of the given problem. The general techniques as listed in
[22] are: multi-population approaches, memory-based meth-
ods, and to increase population diversity after change. The
first multi-population method is suited for multiple moving
optima [14], while memory-based techniques are useful for
problems with recurring search space states [23]. Our prob-
lem deals with a single optimum which is altered by a search
space change with limited to no recurrence, and thus can be
dealt with the random immigrants technique [20] which adds
diversity (new particles) after a search space change.

One unaddressed area for PSO, which is explored in this
paper, consists of dynamic optimization problems in which
the dimensionality of the problem changes along with the
other changes in the search space. Note, this is different
from what was done by Kiranyaz et al. in [9] where it was
possible to search within a known range of dimensionality
of a specific search space. In the work of Kiranyaz et al.
finding the optimal solution to a specific problem also con-
sisted of simultaneously searching for an associated optimal
number of dimensions. This paper deals with a dynamic
search space in which the dimensionality of the problem will
change indeterminately over time, resulting in unpredictable
changes in the search space.

In the following section, an abstract continuous dynamic
PSO solution to the problem of changing dimensionality is
described. This solution tackles the challenge of a high de-
pendency between existing and new dimensional values as
the result of attempting proportional fair distribution of a
constrained shared resource. The dynamic PSO solution is
unique as it utilizes an indirect particle encoding method
to incorporate new dimensions and their associated values
within a particle into the existing solution. This is done in
such a way that the new values are a relatively good starting
point in regards to finding more optimal values, allowing for
previously found populations and solutions to be utilized in
the subsequent optimization.

3. PROPORTIONAL FAIR CONSTRAINED
RESOURCE ALLOCATION

In this section, first the resource allocation problem and
the associated assumptions necessary for the given solution
are defined, then this paper’s unique indirect encoding of
this problem as a PSO particle is described.

3.1 Problem Definition
We are solving a constrained shared resource allocation

problem with the assumptions that:

• We have a set R = {r0, . . . , rnres−1} of nres shared
resources where each resource rj ∈ R has a constrained
resource quantity rquantj > 0.
• We want to determine a proportionally fair alloca-

tion of the shared resources by determining a set S =
{s0, . . . , snsh−1} of nsh where each share (porti, rj) =
si ∈ S consists of a portion porti ∈ [0, rquantj ] of a
resource rj ∈ R.
• The total of all portions porti related to the same re-

source rj is equal to rquantj . That is, every resource
represented by at least one share is allocated com-
pletely between all referencing shares.

• It is expected that at least two shares may reference
(share) the same resource during optimization.
• Every resource does not need to be allocated to a share,

but every share needs a resource even if the portion is
assigned zero as an amount.
• Most importantly, the set S of shares is dynamic and

the number of shares nsh will increase and decrease
over the continuous optimization process.

The optimization goal is the sharing of the resources R
in a proportionally fair manner by determining assignments
of the shares in S. It is important to note that this is
proportionally fair in regards to the fitness function, which
may value equal portions of a share differently depending on
the entity/agent/system resource/etc. associated with that
share. Therefore, a fair solution will not necessarily be the
division of every resource equally between all the shares. For
example, each share si has a logarithmic utility U of bene-
fit, weighted by wrj , to the end user for utilizing the portion
porti of resource rj such that U(porti) = log(wrj · porti).
The fitness function applied to a particle representing a re-
source allocation solution maximizes the summation of these
utilities.

fit(X) = fit(S) =
∑
si∈S

U(porti)

In addition to the constrained OFDMA resource alloca-
tion problem considered in this paper [4,5], some examples of
constrained resource allocations problems include: resource
constrained multi-robot allocation which assigns robots to
solve tasks given resource constraints [7], the allocation of
constrained resources within a grid system to satisfy the
performance requirements of the user’s and system [12], and
the constrained allocation of energy within data centers to
maximize task completion [25].

3.2 PSO Indirect Encoding Solution
A solution to a constrained shared resource allocation

problem consists of an assignment of resources from R to the
shares in S. Each resource allocation solution is encoded as
a particle in the PSO swarm in the following manner.

Every share si ∈ S can be defined in one of two ways: with
a known resource which does not need to be searched for
during optimization, or an unknown resource that must be
searched for during optimization. The most efficient method
to encode a resource allocation solution as a particle in a
PSO swarm is to encode a single dimension for every share
si with a known resource (this dimension represents the por-
tion porti of that resource), and two dimensions for every
share with an unknown resource (these dimensions repre-
sent the resource rj and the portion porti of that resource).
However for simplicity of presentation in the following en-
coding definition, two dimensions x2i and x2i+1, and their
accompanying velocities, will be encoded for each share si.
A resource allocation solution

s0 s1 . . . snsh−1

is expanded to

rj′ port0 rj′′ port1 . . . rj′′′ portnsh−1

with rj′, rj′′, rj′′′ ∈ R and is mappable one-to-one with

x0 x0+1 x2 x2+1 . . . x2(nsh−1)) x2(nsh−1)+1

To determine the resource referenced by a share with an
unknown resource the particle value x2i ∈ X associated with
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the share’s resource must be converted into a resource refer-
ence. The range [0, 1] of the dimension of x2i is consequently
divided into equally sized segments for each resource rj valid
for the share si. The share’s assigned resource is determined
by which segment the value x2i falls within. This is done
using the following equation rj = rbx2i·|Rsi |c where Rsi ⊆ R
consists of the valid resources in R for share si.

Now that the resources referenced by all shares are known,
the portion porti for each share si can be determined by
converting the value x2i+1 ∈ X associated with the share’s
portion into a portion value porti. We will consider the
determined resource of a given share to be rj . This portion
is equal to the quantity of the resource rquantj , multiplied
by the fraction of the current share’s portion value x2i+1,
divided by the sum total of the portion values for every
share sharing the current share’s resource. That is

porti = rquantj · x2i+1∑
rj≡rk

x2k+1

In each regular iteration of the PSO, all particles in the
swarm will be updated according to the standard PSO algo-
rithm defined in the previous section. In order to evaluate
the fitness function, each particle is then converted via this
encoding into a resource allocation solution and the fitness
function is used to determine the value of the particle’s loca-
tion in the search space. The optimization process is never
reset, rather diversity is maintained by adding new random
immigrants periodically.

If a new share is created, nsh is incremented and a new
share si = snsh−1 is added to S and the dimensions, x2i
and x2i+1 required to represent it, are added to every par-
ticle/velocity in the swarm, including the global/personal
best, with new random values. If a share si is removed, then
nsh is decremented and the dimensions, x2i and x2i+1 relat-
ing to the share, are similarly removed. At either of these
times the fitness values of the particles and global/personal
best are re-evaluated.

The chosen indirect encoding ensures that when dimen-
sions for a new share are added, then the share is already
referencing some resource rj and is being given a portion
porti of it. By determining this portion by utilizing a frac-
tion of the summation of portions referencing the same re-
source, this initial portion is taken proportionally from all
of the other shares. This may not exactly be the optimal
proportionally fair solution, especially in regards to the util-
ity function U , but it is often a good initial value such that
the agent/entity/etc. associated with the new share is not
unfairly penalized by being new to the problem.

To demonstrate these claims, the following section im-
plements this particle encoding method for the problem of
OFDMA cellular bandwidth allocation with mobile users en-
tering and leaving the service of cell towers.

4. OFDMA CELLULAR BANDWIDTH AL-
LOCATION

In order to validate the described continuous dynamic
PSO for proportional fair multi-dimensional search, this pa-
per applies it to the problem of proportional fair Orthogonal
Frequency-Division Multiple Access (OFDMA) resource al-
location. Many high-rate wireless data services, such as the
4G cellular services standard Long Term Evolution (LTE),
employ OFDMA to allocate radio resources to users, based

on channel condition, in order to improve the overall perfor-
mance of the cellular system.

The dynamic multi-user OFDMA literature generally di-
vides optimization techniques into two classes: margin adap-
tive (MA) [2] and rate adaptive (RA) [17] techniques. MA
schemes attempt to minimize overall transmit power, while
RA schemes attempt to maximize the total data rate. Of
particular interest for this paper are existing RA applica-
tions of well performing heuristic techniques such as simu-
lated annealing [4], game theoretic [11], genetic algorithm
[21], and particle swarm optimization (PSO) [2, 16, 17, 24]
approaches. Unlike MA algorithms, which have free capac-
ity for users, RA algorithms have to redistribute resources
(i.e. power, time) away from other users to handle an in-
crease in load resulting in a high dependency between users’
resource allocations.

PSO techniques have been applied rather successfully to
the problem. However, the papers utilizing RA PSO tech-
niques do so in a static setting, which does not address the
issue of solving the continuous dynamic optimization prob-
lem caused by user mobility [17,24]. As users leave/enter the
coverage of a cell, so do the user’s accompanying resource
allocation requirements. Therefore, it is desirable for the
network to gracefully incorporate the additional load of new
mobile users while maintaining appropriate data rates for
existing users. Additionally, it is important that the system
maintains an appropriate valid solution such that users are
always provided cellular service (i.e. the anytime property).

4.1 OFDMA Model
A static version of the dynamic rate adaptive OFDMA

model used in this paper, which ignores the difficulty of user
mobility and hand-off between cells, can be found in [4]. In
our dynamic OFDMA model, let K denote the set of sepa-
rately managed wireless cells. In this paper, each individual
cell’s resource allocation problem is optimized separately.
Let, M and N denote, respectively, the set of users and
channels (sub-carriers) each cell has available. Each user
i ∈ M has a proportional fair throughput utility function
U(Ratei) = log(Ratei). Proportional fairness among users
is then achieved by maximizing the summation of the loga-
rithm of individual users’ throughputs

∑
i∈M

Ui(Ratei).

In order to determine this rate, the resource of transmis-
sion power at each cell is allocated to available cell channels
and the users are allocated each to a single channel for a
portion of time. First, each cell k ∈ K allocates a portion
of power Pjk to channel j ∈ N under its maximum total
transmit power pmaxk such that

∑
j∈N Pjk ≤ pmaxk , ∀k ∈ K.

Second, τijk ≥ 0 is the time portion granted by a cell to
user i ∈M on channel j ∈ N for cell k ∈ K with

∑
i∈M

τijk ≤

1,∀j ∈ N, ∀k ∈ K.
The total throughput Ratei that is achieved by user i ∈M

is therefore

Ratei =
∑
j∈N

∑
k∈K

qik · τijk · C(Sijk).

The variable qik ∈ {0, 1} indicates if a user i ∈ M is as-
signed to a cell k ∈ K where each user is served by a single
cell such that

∑
k∈K

qik = 1,∀i ∈ M . The Shannon-Hartley

capacity formula C(Sijk) = log(1+Sijk) is used to determine
the feasible transmission rate based on the signal to noise
ratio (SINR) Sijk of user i ∈ M served by cell k ∈ K on
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channel j ∈ M [19]. The Signal-to-Interference-plus-Noise-
Ratio (SINR) of user i ∈ M being served by cell k ∈ K on

channel j ∈M is Sijk =
GikPjk

η+
∑
l6=k

GilPjl
, with η being the ther-

mal background noise power. Additionally, Gik is the power
gain of user i ∈ M for cell k ∈ K, with each cell having a
strict finite communication range resulting in a gain of zero
if the user is outside the cell’s range.

4.2 PSO for OFDMA
OFMDA resource allocation has typically been approached

as a static problem, relying on the optimization to be reset
when the problem search space changes. OFDMA resource
allocation is a continuous problem, with the changing en-
vironment conditions and mobile user demands resulting in
both the dimensions and the search space of the problem to
be in flux. The following three problems must be dealt with
for proportional fair OFDMA dynamic resource allocation:
(1) the algorithm should not get stuck in local optima as
the search space changes, (2) it is undesirable to restart the
search every time a user leaves/enters service, and (3) it is
undesirable that users are disproportionally penalized when
they change between serving cells.

The first of these problems will be addressed by maintain-
ing diversity through regularly introducing random immi-
grants into the swarm’s population [20] to avoid unwanted
homogeneity and retain flexibility during the search. The
second problem is addressed through the expandable multi-
dimensional nature of the particle in this paper’s PSO. The
particle expands with two new dimensions for every new
user, and contracts similarly by deleting the two dimensions
referenced by a leaving user. Every time this occurs the old
personal and global bests, are re-evaluated, as in [8].

The final problem is addressed by the interpretation of the
particle values as shares in the resource allocation solution.
An arriving user is assigned two new dimensions with ran-
dom values. Given the interpretation method, this portion
of time on the assigned channel is taken equally from each
of the other users already assigned to the channel. This al-
lows for the transitioning user to receive an initial acceptable
level of service, without requiring the other users served by
the cell to sacrifice their own service unfairly. Similarly, a
leaving user’s time is redistributed to the remaining users.
From this state, the search algorithm will continually opti-
mize towards possible better solutions, shifting users among
channels, changing channel power levels, and user time por-
tions.

The remaining parts of this subsection describe the formal
application of the abstract PSO solution from the previous
section to the problem of dynamic constrained OFDMA re-
source allocation with mobile users. First, an OFDMA re-
source allocation particle encoding is described as an imple-
mentation of the general resource allocation encoding. Then,
an example is given to demonstrate a particle’s interpreta-
tion.

4.2.1 OFDMA Encoding
Our resourcesR consist of a resource of transmission power

and a set of channels |N |. Our set of shares S consists of
a share for every channel that the power (known resource)
will be split between, and a share for every user that requires
service from the cell on some channel (unknown resource).
The OFDMA encoding for a single cell k ∈ K has to in-
clude three parts: (1) the fraction of the total power P kmax

assigned to each channel j ∈ N , (2) the channel resource for
each served user, and (3) the time portion for each served
user on his assigned channel. Note, a cell k serves a set of
users O where O ⊆M is a subset of all users.

An n-dimensional vector therefore consists of two por-
tions: (1) a static portion of |N | shares which maps to assign-
ments of the known power resource to a channel j ∈ N , and
(2) a dynamic portion of 2·|O| shares which maps two vector
values for each user to a portion of time on a single channel
resource. Therefore, the size of a vector is n = |N |+ 2 · |O|,
which dynamically changes as users are added and removed
from a cell. The vector encoding is defined

pow0 . . . pow|N|−1 user0 . . . user|O|−1

with the unknown resource user i ∈ O shares defined

useri = chani timei

This encoding can be interpreted as an OFDMA resource
allocation solution. First, the power pjk for each channel
j ∈ N is determined via

pjk = P kmax ·
powj∑
l∈N powl

.

That is the power for each channel is found by totaling the
power values in the vector and determining the portion of
that total which consists of the channel’s power value. This
portion is multiplied by the total available power P kmax to
get the power assigned to the channel. Second, the channel
j ∈ N of the user i ∈ O is bchani · |N |c.

The range [0, 1] is divided into an equal portion for each
channel, and which portion the vector’s user channel value
falls within is the user’s assigned channel. Finally, the time
fraction of the user i ∈ O on channel j ∈ N is

τijk =
timei∑

chanj≡chanl
timel

.

That is the time for the user on his assigned channel is found
by totaling the time values in the vector for all users on the
same channel. Then the portion of that total, given by the
individual’s time value, is determined. This portion is the
time allocated to the user on his assigned channel.

4.2.2 Example
Consider the following example of a vector:

pow0 pow1 user0 user1 user2
0.25 0.25 0.33 0.45 0.66 0.30 0.70 0.20

For this example there are two channels, i.e. |N | = 2, and
there are three users, i.e. |O| = 3. The total possible power
in each cell is 16 W.

The following is how to interpret the encoding. First, the
power p0k for channel 0 is p0k = 16 · pow0∑

l∈N powl
= 16 · 0.25

0.5
=

8. As well, the power p1k for channel 1 is p1k = p0k =
8. Second, the channel of the user 0 is channel bchan0 ·
2c = b0.33 · 2c = 0. The channel of the user 1 is channel
bchan1 · 2c = b0.66 · 2c = 1. The channel of the user 2 is
channel bchan2 ·2c = b0.7 ·2c = 1. Finally, the time fraction
of the user 0 on channel 0 is τ00k = time0∑

chan0==chanl
timel

=

0.45
0.45

= 1. The time fraction of the user 1 on channel 1 is

τ11k = time1∑
chan1==chanl

timel
= 0.3

0.5
= 0.6. The time fraction

of the user 2 on channel 1 is τ21k = time2∑
chan2==chanl

timel
=

0.2
0.5

= 0.4.
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5. EXPERIMENTS
In this section, the evaluations completed to examine the

OFDMA implementation of the PSO for proportional fair
constrained resource allocation with changing dimensions
are presented. It is important to mention that we know
of no other dynamic OFDMA resource allocation methods
to compare our method to. This is primarily because the
existing developments for OFDMA resource allocation have
focused on the static version of the problem. Therefore, to
use one of these static techniques for the dynamic variant
would require additional research to create a new dynamic
development of a given static technique. Additionally, it
would be an unproductive evaluation to compare the initial
solutions of static techniques, which are made suboptimal
and unsuitable as time passes and users move between cells,
to the dynamic and continuously relevant solution created
by our dynamic technique. First, Subsection 5.1 outlines the
parameters of the OFDMA wireless model and the experi-
mental configurations. Then, Subsection 5.2 describes the
results of evaluating the performance of our indirect vector
encoding for dynamic OFDMA resource allocation

5.1 Parameters
In this subsection, the parameters of the simulation envi-

ronment, PSO algorithm, and wireless OFDMA model are
described as used in the experimental evaluations.

5.1.1 Environment Parameters
The environment for the experiments is constructed sim-

ilar to the environment in [4]. There are |K| = 4 cell sites
located in a rectangular coverage area of X0 = 4 km by
Y0 = 4 km. Each cell has a circular coverage diameter of
2.5 km. The edges of the environment are connected in a
toroidal ‘wrap-around’ manner to avoid boundary effects.
The cell sites are arranged in a diamond pattern in the en-
vironment to maximize coverage. The model is tested with
three amounts of |M | = 64, 128, or 256 users, which are
distributed at random across the coverage area. These users
are each given a random static directional vector of (x, y) en-
vironmental movement velocity with a speed of at most 100
km/h. Additionally, the model is tested with three different
counts of channels |N | = 16, 128, or 1024.

5.1.2 PSO Parameters
A cell is assigned a swarm of 25 particles, which every

100 iterations has 5 particles replaced by new random im-
migrant particles to maintain diversity. The learning fac-
tors are c1 = 1.0 and c2 = 1.0. At the beginning of an
evaluation, users are randomly assigned to any cell which
currently covers them for service. When a user leaves a cov-
erage area, his associated particle dimensions are removed
from the cell’s swarm they are leaving and two new random
dimensions are added and assigned to the user in the swarm
of the cell they are arriving at. Each PSO swarm operates
continuously and independently in its own thread. Similarly,
the users’ positions are updated independently by a thread
which evaluates their current location every 0.1 seconds. In
order to facilitate comparison between varying numbers of
users, the fitness function (aggregate throughput utility) for
the PSO is normalized by the number of users, obtaining the
average throughput utility per user: 1

|M|
∑M
i=1 log(Ratei).

5.1.3 Wireless Parameters
The assumptions concerning channel gains are broadly

consistent with the standard 3GPP propagation models [1].
In particular, the channel gain value from cell site k to
user i is Gik = H(Dik), with Dik the distance between
cell site k and user i (in km), and H(d) = 10h0 · d−κ, i.e.
H(d) = 10·h0−10·κ·log10(d) (dB), with a path loss exponent
κ = 3.5 and h0 = −14.4. The thermal background noise is
η = −174 dBm (Hz−1), and the bandwidth per frequency is
1 MHz. Each cell site has a maximum total transmit power
budget of Pmaxk = 16 W. The feasible transmission rate as a
function of SINR s is given by C(s) = c0 · log2(1+s) (Kbps),
with c0 = 1000.

5.2 Numerical Evaluations
In order to complete the evaluations a simulator was de-

veloped. Four cells in a diamond pattern with overlapping
coverage areas were simulated. In total, nine evaluations
of 3 minutes in length were completed, each consisting of a
unique combination of the user and channel counts stated
in the previous subsection. We examine the results, first to
see if the overall throughput of cell service was maintained,
and second to see how the throughput of individual users
was maintained as mobile users transit the environment and
shift between cells. Finally, we examine the impact of chang-
ing the PSO parameters that maintain diversity and how the
algorithm performs at different rates of user mobility.

Figure 1 examines the overall service by reporting the av-
erage user throughput utility and served users for the 4 cells
with 64 users and 16 channels. The other results for the re-
maining combinations are omitted as they show the same be-
havior with a slightly higher or lower convergence of average
user throughput utility. Summarizing across all nine evalu-
ations, an increase in channels available to a cell in general
increases the ability of the cell to share and utilize available
bandwidth, resulting in, on average, higher user throughput
utility. This convergence is higher the more channels and less
users being served per cell. Additionally, cross-referencing
(a) and (b) in Figure 1 shows that the average user through-
put utility of a cell is inversely correlated to the number of
users being served by the cell.

Figures 2 and 3, of low and then high user load per chan-
nel, report the user throughput utility and serving cell for
4 selected users which switch between the 4 cells during the
evaluation period. Each time a user transfers between cells
the transfer is indicated by an additional point on the hor-
izontal Elapsed Time axis. The graphs are combinations of
64/256 total users and 16/1024 channels. The other results
are omitted as they do not provide as much detail as the
chosen examples of more extreme combinations of low and
high user per channel load.

In the case of low load usage the existence of unused chan-
nels, as in Figure 2, means that the initial random channel
assignment for a user on a particular cell may be completely
unpowered. This unpowered condition can be seen in User
0 and 1 who each transfer between cells and are assigned to
an initial random unpowered channel and resultantly have
no throughput. However, when this event happens the al-
gorithm immediately rectifies the lack of power in the next
update. This boundary case may be rectified easily in future
algorithm development by limiting initial random channel
assignment for new users to only channels with power. This
is not a problem with high load usage, such as in Figure 3,

1140



(a) Number of Users Served by each Cell

(b) Average User Throughput Utility for each Cell

Figure 1: Cell Service (64 Users, 16 Channels)

when there are more users than channels, as all channels are
always powered.

In the case of high load usage, such as Figure 3, there is
much more volatility to an individual user’s transfer rate.
This is because in most cases a user is sharing a channel
with other users. Therefore, as the users’ channel condi-
tions change as they move around the environment, when
the algorithm attempts to change the user’s time portion on
a channel it not only affects the user’s own throughput but
that of the other users on the same channel. A user transfer-
ring between cells can also experience additional volatility
when the user’s new time portion assignment on a channel is
much lower than those of the other users sharing the channel.
This is the case for user 1 in Figure 3. This may be rectified
in future algorithm development by caching an average user
portion for each channel which is assigned to newly arriving
users instead of a completely random value. Volatility is not
a problem with low load usage, such as in Figure 2, where
after a user moves to a new cell their throughput is more
stable, increasing as the user moves closer towards the cell
center then decreasing as the user subsequently moves away.

Figure 4 examines the impact of changing the PSO di-
versity parameters. In the previous evaluations these pa-
rameters replaced 5 random particles in the PSO every 100
iterations to maintain the diversity of the swarm. This diver-
sity is desirable as it means the PSO can avoid being unable
to find the desired solution to the current problem because
it has become too homogenous and is trapped in past local
optima. In these evaluations the impact of variable rates of

Figure 2: Low Load - 1 User per 16 Channels (64
Users, 1024 Channels)

Figure 3: High Load - 16 Users per 1 Channel (256
Users, 16 Channels)

diversity change on the average throughput utility of a cell
is reported for a single cell of the 4 for 64 users on 16 chan-
nels. The different chosen rates include never updating the
diversity, or replacing a single particle every 10, 100, 1000,
and 10000 iterations of swarm. All the different rates face
very short term drops in the average throughput rate, which
is the expected result of the changing problem. However,
never updating, or updating too rarely, result in longer pe-
riods around the 2 minute mark where the algorithm remains
stuck in an old local optima and is unable to transition to
the better solution found by the more diverse algorithms.

In summary, outside of the identified rectifiable edge cases,
the algorithm maintains good initial rates for users switch-
ing between cells and the service level of existing users as
new users arrive. The identified issues, with low channel load
users being assigned to an unpowered channel and with high
channel load users getting inadequate initial time portions,
should be solvable with the described additions to the algo-
rithm’s behavior. The algorithm’s diversity is an important
factor in allowing the algorithm to provide relevant solutions
to even challenging problems with highly mobile users.

6. CONCLUSION
This paper introduced a proportional fair constrained re-

source allocation PSO algorithm for dynamic multi-dimensional
optimization problems and implemented it for rate adaptive
OFDMA resource allocation with mobile users. This imple-
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Figure 4: Diversity Maintenance (64 Users, 16
Channels)

mentation demonstrated, over a continuous period of opera-
tion, the ability to gracefully optimize the proportional fair
allocation of resources within a cell as user load moved be-
tween cells. This load management optimization benefited
both the overall cellular system’s performance, as well as the
data rates experienced by individual cellular users switching
between cells. The implementation demonstrated the ability
of the PSO algorithm to allocate a constrained and shared
set of resources in a proportional fair manner for a dynamic
problem with quickly changing dimensionality. However, the
evaluations also indicated addressable boundary case weak-
nesses. First, when low load resulted in initial assignments
of users to unpowered channels. Second, when high load
resulted in volatility due to inadequate initial time portion
assignment on shared channels. In the future, providing
more considerations on the initial resource portion, such as
a cached average instead of random value, may provide the
ability to suppress this volatility.
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