Generators and relations for 2-qubit Clifford+T operators

Xiaoning Bian and Peter Selinger

Dalhousie University

Presented at 29th FMCS workshop, Kananaskis June 25, 2022

Contents

Background

Definitions and notations Motivation Reidemeister-Schreier theorem

Main theorem

Proof of the main theorem Proof outline Relation simplification Automation

Clifford operators

The set of Clifford operators is generated by the operators

$$\omega = e^{i\pi/4}, \quad H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \quad S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}, \quad CZ = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix},$$

and is closed under multiplication and tensor product.

Every such operator U is of size 2ⁿ × 2ⁿ for some natural number n. We say that U is an operator on n qubits.

Clifford + T operators

 \blacktriangleright We obtain a universal gate set by also adding the T-gate as a generator

$$\mathcal{T}=\left(egin{array}{cc} 1 & 0 \ 0 & \omega \end{array}
ight).$$

The resulting operators are called the Clifford+T operators.

▶ We focus on the case n = 2. We write $T_0 = T \otimes I$ and $T_1 = I \otimes T$, and similarly for H_0 , H_1 , S_0 , and S_1 . We also identify the scalar ω with the 4 × 4-matrix ωI .

► We use circuit notation, for example

$$\underline{\overline{T}} = T_0, \quad \underline{\overline{T}} = T_1, \text{ and } \underline{\overline{T}} = CZ.$$

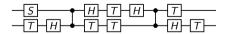
Motivation

- ► For 1-qubit Clifford+*T* operators:
 - ► Generators and relations for 1-qubit Clifford+*T* operators.
 - Matsumoto-Amano normal form (T-optimal, unique)

 $(T | \varepsilon)(HT | SHT)^*C$, where C is some Clifford operator.

- ► For *n*-qubit Clifford+*T* operators:
 - No finite presentation so far.
 - No normal form so far.

▶ The result could potentially be used to minimize the T-count.



Reidemeister-Schreier theorem — notations

The Reidemeister-Schreier procedure [5, 6] is used for finding generators and relations of a subgroup, given generators and relations of the supergroup.

- Let X be a set. We write X* for the set of finite sequences of elements of X, which we also call words over the alphabet X.
- We write w · v or simply wv for the concatenation of words, making X* into a monoid. The unit of this monoid is the empty word e. As usual, we identify X with the set of one-letter words.
- A relation over X is an element of X* × X*, i.e., an ordered pair of words, written as w = v, by a slight abuse of notation.

Reidemeister-Schreier theorem — special case

▶ Let G be a group, presented by (\mathcal{X}, Γ) . Let \mathcal{Y} be another generating set.

We have back-forth translations: define

 $f: \mathcal{X} \to \mathcal{Y}^*, \ g: \mathcal{Y} \to \mathcal{X}^*,$

then extend them to

$$f^*: \mathcal{X}^* \to \mathcal{Y}^*, \ g^*: \mathcal{Y}^* \to \mathcal{X}^*.$$

▶ Then (\mathcal{Y}, Δ) is another presentation of *G*, where

$$\Delta = \{f^*(g(y)) = y \, : \, y \in \mathcal{Y}\} \cup \{f^*(u) = f^*(t) \, : \, u = t \in \mathsf{F}\}.$$

Reidemeister-Schreier theorem - full version

- Let G be a group, presented by (\mathcal{X}, Γ) . Let H be a subgroup of G generated by \mathcal{Y} .
- ▶ One direction of the translation $g : \mathcal{Y} \to \mathcal{X}^*$ still works. Let *C* be the set of coset representatives, define, in a proper way

$$f: \mathcal{C} \times \mathcal{X} \to \mathcal{Y}^* \times \mathcal{C},$$

then, we can extend f to $f^{**}: \mathcal{C} \times \mathcal{X}^* \to \mathcal{Y}^* \times \mathcal{C}$,

$$f^{**}(c_0, x_1 \dots x_n) = (w_1 \cdot \dots \cdot w_n, c_n), \text{ where } f(c_{i-1}, x_i) = (w_i, c_i).$$

• Then (\mathcal{Y}, Δ) is a presentation of H, where

$$\begin{array}{rcl} \Delta & = & \{f^{***}(I,g(y)) = y \, : \, y \in \mathcal{Y}\} \\ & \cup & \{f^{***}(c,u) = f^{***}(c,t) \, : \, u = t \in \Gamma, \, c \in C\}, \end{array}$$

and where $f^{***}(c, x) = fst(f^{**}(c, x))$.

Reidemeister-Schreier theorem — monoid version

Theorem 2.1 (Reidemeister-Schreier theorem for monoids). Let X and Y be sets, and let Γ and Δ be sets of relations over X and Y, respectively. Suppose that the following additional data is given:

- a set C with a distinguished element $I \in C$,
- ▶ a function $f : X \to Y^*$,
- ▶ a function $h: C \times Y \to X^* \times C$,

subject to the following conditions:

- a. For all $x \in X$, if $h^{**}(I, f(x)) = (v, c)$, then $v \sim_{\Gamma} x$ and c = I.
- b. For all $c \in C$ and $w, w' \in Y^*$ with $(w, w') \in \Delta$, if $h^{**}(c, w) = (v, c')$ and $h^{**}(c, w') = (v', c'')$ then $v \sim_{\Gamma} v'$ and c' = c''.

Then for all $v, v' \in X^*$, $f^*(v) \sim_{\Delta} f^*(v')$ implies $v \sim_{\Gamma} v'$.

Theorem 3.1. The 2-qubit Clifford+T group is presented by (\mathcal{X}, Γ) , where the set of generators is

$$\mathcal{X} = \{\omega, H_0, H_1, S_0, S_1, T_0, T_1, CZ\},\$$

and the set of relations Γ is shown in the following two slides.

Relations

(a) Monoidal relations:

$$\omega A = A\omega$$
, where $A \in \{H_i, S_i, T_i, CZ\}$ (1)

$$A_0B_1 = B_1A_0$$
, where $A, B \in \{H, S, T\}$ (2)

(b) Order of Clifford group elements:

$$\omega^8 = \epsilon \tag{3}$$

$$H_i^2 = \epsilon \tag{4}$$

$$S_i^4 = \epsilon \tag{5}$$

$$(S_i H_i)^3 = \omega \tag{6}$$

$$CZ^2 = \epsilon \tag{7}$$

(c) Remaining Clifford relations:

_

$$-\underline{\overline{\mathbf{S}}} = -\underline{\overline{\mathbf{S}}}$$
(8)

$$-\underline{\Box} = -\underline{\Box} = -\underline{\Box$$

$$-\underbrace{H + \underline{5} + \underline{5} + \underline{H}}_{\longrightarrow} = -\underbrace{H + \underline{5} + \underline{5} + \underline{H}}_{\longrightarrow}$$
(10)

$$-\underline{H} \underbrace{5} \underbrace{5} \underbrace{H} \underbrace{-\underline{H}} = \underbrace{-\underbrace{5} \underbrace{5} \underbrace{5} \underbrace{-\underline{H}} \underbrace{-\underline{5}} \underbrace{-\underline{5}} \underbrace{H} \underbrace{-\underline{5}} \underbrace{-\underline{5}}$$

$$\xrightarrow{+H} = \underbrace{-5 + H + 5 + H + 5}_{5} \cdot \omega^{-1}$$
(12)

Here $i \in \{0, 1\}$

Relations — T part

(d) "Obvious" relations involving T:

$$T_i^2 = S_i \tag{14}$$

$$(T_i H_i S_i S_i H_i)^2 = \omega$$
⁽¹⁵⁾

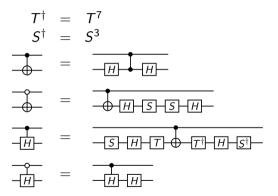
$$\underbrace{\neg \Box} = \underbrace{\neg \Box}$$
(16)

$$\begin{array}{c} \hline H \\ \hline \end{array} = \begin{array}{c} \hline H \\ \hline H \\ \hline H \\ \hline H \\ \hline \end{array}$$
(17)

(e) "Non-obvious" relations involving T:

Abbreviations

In relations (18)–(20), we have used abbreviations:



Proof outline

Let $R = \mathbb{Z}[\frac{1}{\sqrt{2}}, i]$ be the smallest subring of the complex numbers containing $\frac{1}{\sqrt{2}}$ and *i*, and let $G = U_4(R)$ be the group of unitary 4×4 -matrices with entries in *R*.

- 2-qubit Clifford+T operators is the subgroup of G consisting of matrices whose determinant is a power of i [2].
- ▶ A presentation of G by generators and relations was given by Greylyn [4].
- Apply the Reidemeister-Schreier procedure.

Relation simplification

- ► The Reidemeister-Schreier procedure produces 254 Clifford+T relations. We must verify that each of them is derivable from relations (1) (20). This task is too much to do "by hand".
- ▶ We formalize the Main Theorem and its proof in the proof assistant Agda [1].
- ▶ Naively hard-coding the proof is also too much, we use some automation.
- Automation takes care most of 254 proof obligations.

Automation

- ▶ We use the *Pauli rotation representation* of Clifford+*T* operators [3, Section 3].
- Every Clifford+T operator can be written as a product of Pauli rotations followed by a single Clifford operator.

$$C_1 T_{(i_1)} C_2 T_{(i_2)} C_3 \cdots C_n T_{(i_n)} C_{n+1} = R_{P_1} R_{P_2} \cdots R_{P_n} D_{n+1},$$

where R-syllable R_P is indexed by Pauli operators (finite many). E.g. $R_{Z\otimes I} = T_0$.

Automation

The representation can be standardized using:

- (a) R_P and R_Q commute if and only if P and Q commute.
- (b) R_P^2 is Clifford, and therefore can be "eliminated".
- (c) $R_{(-P)} = R_P D$, for some Clifford operator D.

To show L = R, we show P(L) = P(R), where P(X) is the standardized Pauli rotation representation of X.

Easy to code the above rewriting.

Easy to code the proofs of the rewriting rules are devrivable from our relations.

- Using proof assistant for some computation-heavy proofs might be a good idea.
- ► Complete relations for 3-qubit Clifford+*T* operators.
- Another project that is currently in progress is to apply the method of this paper to restrictions of the Clifford+T group.

References

Agda documentation.

https://agda.readthedocs.io/. Accessed: 2022-02-15.

B. Giles and P. Selinger.

Exact synthesis of multiqubit Clifford+*T* circuits. *Physical Review A*, 87(3):032332 (7 pages), 2013. Also available from arXiv:1212.0506.

D. Gosset, V. Kliuchnikov, M. Mosca, and V. Russo. An algorithm for the T-count.

Quantum Information and Computation, 14(15–16):1261–1276, 2014. Also available from arXiv:1308.4134.

S. E. M. Greylyn. Generators and relations for the group $U_4(\mathbb{Z}[\frac{1}{\sqrt{2}}, i])$. M.Sc. thesis, Dalhousie University, 2014. Available from arXiv:1408.6204.

📔 K. Reidemeister.

Knoten und Gruppen.

Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 5(1):7-23, 1927.

O. Schreier.

Die Untergruppen der freien Gruppen.

Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 5(1):161–183, 1927.