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Clifford operators

▶ The set of Clifford operators is generated by the operators

ω = e iπ/4, H =
1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
, CZ =

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

,

and is closed under multiplication and tensor product.

▶ Every such operator U is of size 2n × 2n for some natural number n. We say that
U is an operator on n qubits.



Clifford+T operators

▶ We obtain a universal gate set by also adding the T -gate as a generator

T =
(
1 0
0 ω

)
.

The resulting operators are called the Clifford+T operators.

▶ We focus on the case n = 2. We write T0 = T ⊗ I and T1 = I ⊗ T , and similarly
for H0, H1, S0, and S1. We also identify the scalar ω with the 4× 4-matrix ωI .

▶ We use circuit notation, for example

T = T0,
T

= T1, and = CZ .



Motivation

▶ For 1-qubit Clifford+T operators:
▶ Generators and relations for 1-qubit Clifford+T operators.
▶ Matsumoto-Amano normal form (T-optimal, unique)

(T | ε)(HT | SHT )∗C , where C is some Clifford operator.

▶ For n-qubit Clifford+T operators:
▶ No finite presentation so far.
▶ No normal form so far.

▶ The result could potentially be used to minimize the T-count.
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Reidemeister-Schreier theorem — notations

The Reidemeister-Schreier procedure [5, 6] is used for finding generators and relations
of a subgroup, given generators and relations of the supergroup.

▶ Let X be a set. We write X ∗ for the set of finite sequences of elements of X ,
which we also call words over the alphabet X .

▶ We write w · v or simply wv for the concatenation of words, making X ∗ into a
monoid. The unit of this monoid is the empty word ϵ. As usual, we identify X
with the set of one-letter words.

▶ A relation over X is an element of X ∗ × X ∗, i.e., an ordered pair of words, written
as w = v , by a slight abuse of notation.



Reidemeister-Schreier theorem — special case

▶ Let G be a group, presented by (X , Γ). Let Y be another generating set.

▶ We have back-forth translations: define

f : X → Y∗, g : Y → X ∗,

then extend them to
f ∗ : X ∗ → Y∗, g∗ : Y∗ → X ∗.

▶ Then (Y,∆) is another presentation of G , where

∆ = {f ∗(g(y)) = y : y ∈ Y} ∪ {f ∗(u) = f ∗(t) : u = t ∈ Γ}.



Reidemeister-Schreier theorem — full version

▶ Let G be a group, presented by (X , Γ). Let H be a subgroup of G generated by Y.

▶ One direction of the translation g : Y → X ∗ still works. Let C be the set of coset
representatives, define, in a proper way

f : C ×X → Y∗ × C ,

then, we can extend f to f ∗∗ : C ×X ∗ → Y∗ × C ,

f ∗∗(c0, x1 . . . xn) = (w1 · . . . · wn, cn), where f (ci−1, xi ) = (wi , ci ).

▶ Then (Y,∆) is a presentation of H, where

∆ = {f ∗∗∗(I , g(y)) = y : y ∈ Y}
∪ {f ∗∗∗(c , u) = f ∗∗∗(c , t) : u = t ∈ Γ, c ∈ C},

and where f ∗∗∗(c , x) = fst(f ∗∗(c , x)).



Reidemeister-Schreier theorem — monoid version

Theorem 2.1 (Reidemeister-Schreier theorem for monoids). Let X and Y be sets, and
let Γ and ∆ be sets of relations over X and Y , respectively. Suppose that the following
additional data is given:

▶ a set C with a distinguished element I ∈ C ,

▶ a function f : X → Y ∗,

▶ a function h : C × Y → X ∗ × C ,

subject to the following conditions:

a. For all x ∈ X , if h∗∗(I , f (x)) = (v , c), then v ∼Γ x and c = I .

b. For all c ∈ C and w ,w ′ ∈ Y ∗ with (w ,w ′) ∈ ∆, if h∗∗(c ,w) = (v , c ′) and
h∗∗(c,w ′) = (v ′, c ′′) then v ∼Γ v ′ and c ′ = c ′′.

Then for all v , v ′ ∈ X ∗, f ∗(v) ∼∆ f ∗(v ′) implies v ∼Γ v ′.



Main theorem

Theorem 3.1. The 2-qubit Clifford+T group is presented by (X , Γ), where the set of
generators is

X = {ω,H0,H1,S0,S1,T0,T1,CZ},

and the set of relations Γ is shown in the following two slides.



Relations (a) Monoidal relations:

ωA = Aω, where A ∈ {Hi ,Si ,Ti ,CZ} (1)

A0B1 = B1A0, where A,B ∈ {H, S ,T} (2)

(b) Order of Clifford group elements:

ω8 = ϵ (3)

H2
i = ϵ (4)

S4
i = ϵ (5)

(SiHi )
3 = ω (6)

CZ 2 = ϵ (7)

(c) Remaining Clifford relations:

S = S (8)

S
=

S
(9)

H S S H =
S S

H S S H (10)

H S S H
= S S

H S S H
(11)

H = S H

S

S H S · ω−1 (12)

H
=

S H

S

S H S
· ω−1 (13)

Here i ∈ {0, 1}



Relations — T part

(d) “Obvious” relations involving T :

T 2
i = Si (14)

(TiHiSiSiHi )
2 = ω (15)

T = T (16)

H H

H H T =
T H H

H H (17)

(e) “Non-obvious” relations involving T :

T H T † T H T † = T H T † T H T † (18)

T H T H T † T H T † H T † = T H T H T † T H T † H T † (19)

H T H

H T H = H T H

H T H
(20)



Abbreviations

In relations (18)–(20), we have used abbreviations:

T † = T 7

S† = S3

=
H H

=
H S S H

H
=

S H T T † H S†

H
=

H H



Proof outline

Let R = Z[ 1√
2
, i ] be the smallest subring of the complex numbers containing 1√

2
and i ,

and let G = U4(R) be the group of unitary 4× 4-matrices with entries in R.

▶ 2-qubit Clifford+T operators is the subgroup of G consisting of matrices whose
determinant is a power of i [2].

▶ A presentation of G by generators and relations was given by Greylyn [4].

▶ Apply the Reidemeister-Schreier procedure.



Relation simplification

▶ The Reidemeister-Schreier procedure produces 254 Clifford+T relations. We must
verify that each of them is derivable from relations (1) - (20). This task is too
much to do “by hand”.

▶ We formalize the Main Theorem and its proof in the proof assistant Agda [1].

▶ Naively hard-coding the proof is also too much, we use some automation.

▶ Automation takes care most of 254 proof obligations.



Automation

▶ We use the Pauli rotation representation of Clifford+T operators [3, Section 3].

▶ Every Clifford+T operator can be written as a product of Pauli rotations followed
by a single Clifford operator.

C1T(i1)C2T(i2)C3 · · ·CnT(in)Cn+1 = RP1RP2 · · ·RPnDn+1,

where R-syllable RP is indexed by Pauli operators (finite many). E.g. RZ⊗I = T0.



Automation

▶ The representation can be standardized using:

(a) RP and RQ commute if and only if P and Q commute.
(b) R2

P is Clifford, and therefore can be “eliminated”.
(c) R(−P) = RPD, for some Clifford operator D.

▶ To show L = R, we show P(L) = P(R), where P(X ) is the standardized Pauli
rotation representation of X .

▶ Easy to code the above rewriting.

▶ Easy to code the proofs of the rewriting rules are devrivable from our relations.



Future work

▶ Using proof assistant for some computation-heavy proofs might be a good idea.

▶ Complete relations for 3-qubit Clifford+T operators.

▶ Another project that is currently in progress is to apply the method of this paper
to restrictions of the Clifford+T group.
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