\mathcal{O} -categories

Jean-Baptiste Vienney uOttawa

Based on discussions with R. Sarkis and R. Tuyéras Thanks to Sacha for the comments

Supervisor: Rick Blute

<ロ > < 回 > < 目 > < 目 > < 目 > 目 の Q で 1/13

What we're doing

Short version: We define a notion of \mathcal{O} -category which unifies:

- 1. monads and lax monoidal categories,
- 2. algebras over a monad and monoids.

Long version: For every (**Set**-based) operad O, we define a type of categorical structure, that we call O-categories.

They are a weakened form of \mathcal{O} -algebras in the cartesian monoidal category **Cat**: equalities are replaced by directed natural transformations.

Both monads and lax (unbiased) monoidal categories are the $\mathcal{O}\text{-}categories$ for two different $\mathcal{O}s.$

Every \mathcal{O} -category \mathcal{C} has a notion of algebras. Both algebras over a monad and monoids in a lax monoidal category are the algebras over the \mathcal{O} -categories \mathcal{C} for two different \mathcal{O} s.

Operads

Definition

An operad \mathcal{O} is given by a family of sets $(\mathcal{O}(n))_{n \in \mathbb{N}}$ together with:

functions

$$\mathcal{O}(n) imes \mathcal{O}(k_1) imes ... imes \mathcal{O}(k_n) \longrightarrow \mathcal{O}(k_1 + ... + k_n) \ (t, s_1, ..., s_n) \longmapsto t \circ (s_1, ..., s_n)$$

▶ an element $id \in \mathcal{O}(1)$

such that:

Associativity:

$$t \circ (s_1 \circ (u_1^1, ..., u_{n(1)}^1), ..., s_p \circ (u_1^p, ..., u_{n(p)}^p))$$

= $(t \circ (s_1, ..., s_p)) \circ (u_1^1, ..., u_{n(p)}^p)$

Unitality:

$$\mathrm{id} \circ t = t = t \circ (\mathrm{id}, ..., \mathrm{id})$$

<ロ > < 回 > < 回 > < 三 > < 三 > 三 の Q @ 3/13

Operads from a set of arities

Definition

We call set of arities any subset ${\mathbb I}$ of ${\mathbb N}$ such that:

- ▶ $1 \in \mathbb{I}$,
- ▶ if $n, k_1, ..., k_n \in \mathbb{I}$, then $k_1 + ... + k_n \in \mathbb{I}$.

Example (of set of arities)

- 1. If X is a subsemigroup of $(\mathbb{N}, +)$, then $X \cup \{1\}$ is a set of arities.
- 2. If $A \subseteq \mathbb{N}$, we have the set of arities $\langle A \rangle$ generated by A. If $A \not\subseteq \{1\}$ and $A \subseteq 2\mathbb{N} + 1$, then $\langle A \rangle$ is not of the first form. Such an example is $\langle 2\mathbb{N} + 1 \rangle = 2\mathbb{N} + 1$.

Example (of operad)

Let $\mathbb I$ be a set of arities. We define an operad $\mathcal O_{\mathbb I}$ by setting:

$$\blacktriangleright \mathcal{O}_{\mathbb{I}}(n) = \begin{cases} \{n\} & \text{if } n \in \mathbb{I} \\ \emptyset & \text{if } n \notin \mathbb{I} \end{cases},$$

•
$$n \circ (k_1, ..., k_n) = k_1 + ... + k_n$$
.

We will note $I = O_{\{1\}}$ and $AS = O_{\mathbb{N}}$. They will be our main examples of operads.

O-algebras 1: endomorphism operads

We recall what is an O-algebra in order to explain how O-categories are a weakened form of O-algebras.

We first need to know what is an endomorphism operad.

Example (of operad)

Let $(\mathcal{C}, \otimes, I)$ be a monoidal category and let $A \in \mathcal{C}$. The endomorphism operad End_A of A is obtained by setting:

<□> <□> <□> <□> <=> <=> <=> = つへで 5/13

• End_A(n) =
$$C[A^{\otimes n}, A]$$

▶ $id = id_A \in End_A(1)$,

$$\blacktriangleright u \circ (v_1, ..., v_n) = u \circ (v_1 \otimes ... \otimes v_n).$$

 $\mathcal{O}\text{-algebras}$ 2: homomorphism of operads and the definition of $\mathcal{O}\text{-algebras}$

Definition

Let $\mathcal{O}_1, \mathcal{O}_2$ be two operads. An homomorphism of operads $f : \mathcal{O}_1 \to \mathcal{O}_2$ is given by a function $f_n : \mathcal{O}_1(n) \to \mathcal{O}_2(n)$ for every $n \in \mathbb{N}$ such that:

•
$$f_{k_1+...+k_n}(u \circ (v_1, ..., v_n)) = f_{k_1+...+k_n}(u) \circ (f_{k_1}(v_1), ..., f_{k_n}(v_n)),$$

• $f_1(\mathrm{id}) = \mathrm{id}.$

Definition

Let \mathcal{O} be an operad and $(\mathcal{C}, \otimes, I)$ a monoidal category. An \mathcal{O} -algebra in \mathcal{C} is an object $A \in \mathcal{C}$ together with an homomorphism of operads $\mathcal{O} \to \operatorname{End}_A$.

\mathcal{O} -categories

Notations:

• we will write
$$\mathcal{O} = \bigsqcup_{n \ge 0} \mathcal{O}(n)$$
,

• if $t \in \mathcal{O}$, we write $t \in \mathcal{O}(n(t))$.

Definition

Let ${\mathcal C}$ be a category. A structure of ${\mathcal O}\text{-category}$ on ${\mathcal C}$ is given by a functor

$$T^t: \mathcal{C}^{n(t)} \to \mathcal{C}$$

for every $t \in \mathcal{O}$, together with:

natural transformations

$$m_{t,s_1,\ldots,s_{n(t)}}$$
: $T^t \circ (T^{s_1} \times \ldots \times T^{s_n}) \Rightarrow T^{t \circ (s_1,\ldots,s_n)}$

a natural transformation

$$u: 1_{\mathcal{C}} \Rightarrow T^{\mathrm{id}}$$

such that some associativity and unitality diagrams commute.

Warning: In the definition of an \mathcal{O} -algebra in the cartesian monoidal category **Cat**, the natural transformations are degenerated ones = equalities.

Monads and lax monoidal categories as O-categories

Example (of *O*-category)

Recall that we can define an operad I by setting $I(1) = {id}$ and $I(n) = \emptyset$ if $n \neq 1$. An I-category is a couple (C, S) where S is a monad on C.

Example (of *O*-category)

Recall that we can define an operad **AS** by $AS(n) = \{n\}$ and:

$$n \circ (k_1, ..., k_n) = k_1 + ... + k_n.$$

An $\boldsymbol{\mathsf{AS}}\xspace$ -category is a lax (unbiased) monoidal category i.e. a category with functors

$$\bigotimes_n:\mathcal{C}^n\to\mathcal{C}$$

and natural transformations

$$\bigotimes_{n} (\bigotimes_{k_{1}} (A_{1}^{1},...,A_{k_{1}}^{1}),...,\bigotimes_{k_{n}} (A_{1}^{n},...,A_{k_{n}}^{n})) \rightarrow \bigotimes_{k_{1}+...+k_{n}} (A_{1}^{1},...,A_{k_{n}}^{n})$$
$$A \rightarrow \bigotimes_{1} (A)$$

such that some associativity and unitality diagrams commute.

Example

Every monoidal category is a lax monoidal category.

Example

Let C be a monoidal category with finite products, together with a monad S on C. Then, $T_n(A_1, ..., A_n) = S(A_1) \times ... \times S(A_n)$ equips C with a structure of a lax monoidal category.

Algebras over an \mathcal{O} -category

Definition

Let C be an \mathcal{O} -category. An algebra over C is an object A together with a morphisms $a_t : T^t(A, ..., A) \to A$ for every $t \in \mathcal{O}$, such that this diagram commutes:

Definition

Let $(A, (a_t))$ and $(B, (b_t))$ be algebras over some \mathcal{O} -category \mathcal{C} . A homomorphism of algebras from A to B is a morphism $f \in \mathcal{C}[A, B]$ such that this diagram commutes:

$$\begin{array}{ccc} T^{t}(A,...,A) & \xrightarrow{T^{t}(f,...,f)} & T^{t}(B,...,B) \\ & & & \downarrow \\ & & \downarrow \\ & A & \xrightarrow{f} & B \end{array}$$

<ロト < 回 > < 目 > < 目 > 目 の へ C 10/13

Algebras over a monad and monoids in a lax monoidal category as algebras over an $\mathcal{O}\text{-}\mathsf{category}$

Example

We have seen that an I-category is a couple (\mathcal{C}, S) where S is a monad on \mathcal{C} . An algebra over the I-category (\mathcal{C}, S) is just an algebra over the monad S.

Example

We have seen that an **AS**-category is a lax monoidal category. An algebra over the **AS**-category C is just a monoid in the lax monoidal category C.

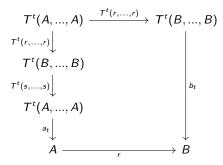
The homomorphisms of algebras also correspond to the usual notions.

An exercise

Proposition

Let $(A, (a_t))$ be an algebra over an \mathcal{O} -category (\mathcal{C}, T) . Let $B \in \mathcal{C}$. Suppose we have such a section-retraction pair in \mathcal{C} :

Then, there exists a structure of T-algebra on B such that r is a homomorphism of T-algebras iff this diagram commutes for every $t \in O$:



<ロト < 回 > < 三 > < 三 > < 三 > ○ へ つ 12/13

In this case, this structure of algebra is unique.

Fun fact: The notion of \mathcal{O} -category has been invented in order to make this exercise possible.

But now the concept of \mathcal{O} -category seems more important than the exercise!

Thank you!