CPSC 418/MATH 318 Practice Problems

Euler Phi, Binary Exponentiation, Diffie-Hellman Key Agreement

- 1. Recall the Euler Phi Function defined via $\phi(m) = |\mathbb{Z}_m^*|$ for all positive integers m; that is, $\phi(m)$ is the number of integers a with $0 \le a < m$ and $\gcd(a, m) = 1$. Compute $\phi(m)$ for the following values of m:
 - (a) m = 73.
 - (b) m = 143.
 - (c) m = 256.
 - (d) m = 600.
 - (e) m = 1.
- 2. (a) Use the binary exponentiation algorithm to compute 2^{13} (mod 15).
 - (b) The inverse of 2 modulo 15 is easily verified to be 8, which is *not* the answer to part (a). So what is wrong with the following reasoning: "Fermat's Little Theorem gives us that $2^{14} \equiv 1 \pmod{15}$. So $2^{13} \pmod{15}$ should simply be the inverse of 2 modulo 15, which is easily computable via the extended Euclidean algorithm."
- 3. Suppose Alice and Bob wish to employ the Diffie-Hellman key agreement protocol to share a common secret key. They agree on the prime p = 11 and the base element q = 2.
 - (a) Verify that p is a safe prime.
 - (b) Verify that 2 is a primitive root of 11.
 - (c) Suppose Alice chooses a = 9 as her secret exponent. Use the binary exponentiation algorithm to compute the element $2^9 \pmod{11}$ that Alice communicates to Bob.
 - (d) Suppose Bob chooses b=7 as his secret exponent. Use the binary exponentiation algorithm to compute the element $2^7 \pmod{11}$ that Bob communicates to Alice.
 - (e) Perform Alice's computation of the key, i.e. use the result of part (d) and Alice's secret exponent to compute the shared key.
 - (f) Perform Bob's computation of the key, i.e. use the result of part (c) and Bob's secret exponent to compute the shared key.

Hint: The result of parts (e) and (f) should be K=8.