CPSC 418/MATH 318 Practice Problems

Hash Functions and Message Authentication Codes

1. Let $H:\{0,1\}^* \to \{0,1\}^n$ be a (strongly) collision resistant hash function (n>0). Define a hash function $H:\{0,1\}^* \to \{0,1\}^{n+1}$ as follows

$$H(x) = \begin{cases} 0 || x & \text{if } x \text{ has length } n, \\ 1 || h(x) & \text{otherwise,} \end{cases}$$

for all $x \in \{0,1\}^*$ where, as usual, "||" denotes string concatenation.

- (a) Prove that H is not pre-image resistant.
- (b) Prove that H is (strongly) collision resistant.
- 2. Let $H_1, H_2 : \{0, 1\}^* \to \{0, 1\}^n$ be hash functions (n > 0). Define a hash function $H : \{0, 1\}^* \to \{0, 1\}^{2n}$ via $H(x) = H_1(x) \| H_2(x)$ for all $x \in \{0, 1\}^*$.
 - (a) Prove that H is collision resistant if at least one of H_1, H_2 is collision resistant.
 - (b) Let H_1 be pre-image resistant and define $H_2:\{0,1\}^* \to \{0,1\}^n$ via

$$H_2(x) = \begin{cases} \text{the last } n \text{ bits of } x & \text{if } x \text{ has length at least } n, \\ 0^{n-k} || x & \text{if } x \text{ has length } k < n. \end{cases}$$

Prove that H is not pre-image resistant for these choices of H_1, H_2 .

- 3. Consider the following message authentication code called BCMAC (for "block cipher message authentication code") which is derived from a block cipher that operates on n-bit plaintexts. BCMAC takes as input a message M of bit length 2n-2 and produces the corresponding tag as follows (here, E_K is encryption under the block cipher using key K and \parallel denotes concatenation):
 - (1) Write $M = M_0 || M_1$ where M_0 , M_1 each have length n-1;
 - (2) BCMAC $(M) = E_K(0||M_0) || E_K(1||M_1)$.

Show that BCMAC is not computation resistant.