CPSC 418/MATH 318 Practice Problems

Modular Arithmetic

Fix a positive integer m (the modulus).

Let $a, b \in \mathbb{Z}$ (the set of integers). Recall that a is congruent to b modulo m, written as $a \equiv b \pmod{m}$, if a - b is an integer multiple of m; in other words, a = b + km for some integer k.

This means that in order to prove that an integer a is congruent modulo m to some other integer b, it suffices to show that their difference a-b is divisible by m. Alternatively, you can exhibit an explicit integer k such that a=b+km.

The congruence class of a modulo m is the set of all integers that are congruent to a modulo m.

- 1. True of False?
 - (a) $8 \equiv 2 \pmod{5}$.
 - (b) $3 \equiv 1000002 \pmod{3}$.
 - (c) $7 \equiv -364 \pmod{7}$.
 - (d) $a \equiv a + 2 \pmod{4}$ for all integers a.
 - (e) $a \equiv a + 2 \pmod{4}$ for no integer a.
 - (f) $5 \equiv 0 \pmod{1}$.
- 2. Write down 3 positive integers and 3 negative integers that belong to the congruence class of 2 modulo 7.
- 3. Which of the following elements belong to the congruence class of -1 modulo 13?
 - (a) 14.
 - (b) -1379.
- 4. Describe (mathematically or in words) the elements in the congruence class of 0 modulo 5.
- 5. Describe in words the congruence class of
 - (a) 0 modulo 2.
 - (b) 1 modulo 2.
- 6. Let m be a fixed positive integer and $a,b,c\in\mathbb{Z}$. Formally prove the following properties of congruences:
 - (a) (Reflexivity) $a \equiv a \pmod{m}$.
 - (b) (Symmetry) If $a \equiv b \pmod{m}$, then $b \equiv a \pmod{m}$.
 - (c) (Transitivity) If $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, then $a \equiv c \pmod{m}$.
- 7. Let m be a fixed positive integer.
 - (a) Prove that no two among the integers 0, 1, 2, ..., m-1 are congruent to each other modulo m.
 - (b) Prove that every integer is congruent modulo m to one of $0, 1, 2, \ldots, m-1$.
- 8. Let m be a fixed positive integer and $a_1, a_2, b_1, b_2 \in \mathbb{Z}$. Formally prove the following properties of congruences:
 - (a) If $a_1 \equiv a_2 \pmod{m}$ and $b_1 \equiv b_2 \pmod{m}$, then $a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$.
 - (b) If $a_1 \equiv a_2 \pmod{m}$, then $ca_1 \equiv ca_2 \pmod{m}$ for all $c \in \mathbb{Z}$.
 - (c) If $a_1 \equiv a_2 \pmod{m}$ and $b_1 \equiv b_2 \pmod{m}$, then $a_1b_1 \equiv a_2b_2 \pmod{m}$.
- 9. Use the decimal representation of integers and properties (a) and (c) in Problem 8 to prove the following:
 - (a) An integer is divisible by 3 if and only if the sum of its decimal digits is divisible by 3.
 - (b) An integer is divisible by 9 if and only if the sum of its decimal digits is divisible by 9.
 - (c) An integer is divisible by 11 if and only if the alternating sum of its decimal digits is divisible by 11. Here, if an integer has decimal digits a_0, a_1, \ldots, a_n , i.e. its decimal representation is $a_0 + a_1 \cdot 10 + a_2 \cdot 10^2 + \cdots + a_n \cdot 10^n$, then its alternating sum of its digits is $a_0 a_1 + a_2 a_3 + \cdots + (-1)^n a_n$.