CPSC 418/MATH 318 Practice Problems

Modular Arithmetic

Fix a positive integer m (the modulus).
Let $a, b \in \mathbb{Z}$ (the set of integers). Recall that a is congruent to b modulo m, written as $a \equiv b$ $(\bmod m)$, if $a-b$ is an integer multiple of m; in other words, $a=b+k m$ for some integer k.

This means that in order to prove that an integer a is congruent modulo m to some other integer b, it suffices to show that their difference $a-b$ is divisible by m. Alternatively, you can exhibit an explicit integer k such that $a=b+k m$.
The congruence class of a modulo m is the set of all integers that are congruent to a modulo m.

1. True of False?
(a) $8 \equiv 2(\bmod 5)$.
(b) $3 \equiv 1000002(\bmod 3)$.
(c) $7 \equiv-364(\bmod 7)$.
(d) $a \equiv a+2(\bmod 4)$ for all integers a.
(e) $a \equiv a+2(\bmod 4)$ for no integer a.
(f) $5 \equiv 0 \quad(\bmod 1)$.
2. Write down 3 positive integers and 3 negative integers that belong to the congruence class of 2 modulo 7.
3. Which of the following elements belong to the congruence class of -1 modulo 13 ?
(a) 14 .
(b) -1379 .
4. Describe (mathematically or in words) the elements in the congruence class of 0 modulo 5 .
5. Describe in words the congruence class of
(a) 0 modulo 2 .
(b) 1 modulo 2 .
6. Let m be a fixed positive integer and $a, b, c \in \mathbb{Z}$. Formally prove the following properties of congruences:
(a) (Reflexivity) $a \equiv a(\bmod m)$.
(b) (Symmetry) If $a \equiv b \quad(\bmod m)$, then $b \equiv a \quad(\bmod m)$.
(c) (Transitivity) If $a \equiv b(\bmod m)$ and $b \equiv c \quad(\bmod m)$, then $a \equiv c(\bmod m)$.
7. Let m be a fixed positive integer.
(a) Prove that no two among the integers $0,1,2, \ldots, m-1$ are congruent to each other modulo m.
(b) Prove that every integer is congruent modulo m to one of $0,1,2, \ldots, m-1$.
8. Let m be a fixed positive integer and $a_{1}, a_{2}, b_{1}, b_{2} \in \mathbb{Z}$. Formally prove the following properties of congruences:
(a) If $a_{1} \equiv a_{2} \quad(\bmod m)$ and $b_{1} \equiv b_{2} \quad(\bmod m)$, then $a_{1}+b_{1} \equiv a_{2}+b_{2} \quad(\bmod m)$.
(b) If $a_{1} \equiv a_{2}(\bmod m)$, then $c a_{1} \equiv c a_{2}(\bmod m)$ for all $c \in \mathbb{Z}$.
(c) If $a_{1} \equiv a_{2} \quad(\bmod m)$ and $b_{1} \equiv b_{2} \quad(\bmod m)$, then $a_{1} b_{1} \equiv a_{2} b_{2} \quad(\bmod m)$.
9. Use the decimal representation of integers and properties (a) and (c) in Problem 8 to prove the following:
(a) An integer is divisible by 3 if and only if the sum of its decimal digits is divisible by 3 .
(b) An integer is divisible by 9 if and only if the sum of its decimal digits is divisible by 9 .
(c) An integer is divisible by 11 if and only if the alternating sum of its decimal digits is divisible by 11. Here, if an integer has decimal digits $a_{0}, a_{1}, \ldots, a_{n}$, i.e. its decimal representation is $a_{0}+a_{1} \cdot 10+a_{2} \cdot 10^{2}+\cdots+a_{n} \cdot 10^{n}$, then its alternating sum of its digits is $a_{0}-a_{1}+a_{2}-a_{3}+\cdots+(-1)^{n} a_{n}$.
