CPSC 418/MATH 318 Practice Problems

Extended Euclidean Algorithm and Modular Inverses

Recall that the Euclidean Algorithm finds the greatest common divisor (gcd) of two integers, and the Extended Euclidean Algorithm produces a way to write this gcd as an integer linear combination of the two integers.
Fix a positive integer m. Recall that an integer a has a inverse modulo m, i.e. there exists an integer x such that $a x \equiv 1(\bmod m)$, if and only if $\operatorname{gcd}(a, m)=1$. or equivalently, $a \in \mathbb{Z}_{m}^{*}$. In this case, the extended Euclidean algorithm produces an identity of the form $a x+m y=1$, and x is a modular inverse of $a(\bmod m)$.

1. Compute $d=\operatorname{gcd}(a, b)$ and find integers x, y such that $a x+b y=d$ for the following values of a and b :
(a) $a=36, b=15$.
(b) $a=6, b=70$.
(c) $a=-356, b=13$.
(d) $a=0, b$ an arbitrary integer.
(e) $a=1, b$ an arbitrary integer.
2. For which of the following integers a, m does a have an inverse modulo m ?
(a) $a=637, m=14$.
(b) $a=101, m=7$.
(c) $a=-356, b=13$.
3. For those pairs (a, m) in Problem 2 for which a has an inverse modulo m, find such a modular inverse.
4. (a) Let $a, b \in \mathbb{Z}$, not both zero, such that $\operatorname{gcd}(a, b)=1$.Then there exist integers x, y with $a x+b y=1$. Prove that for any $c \in \mathbb{Z}$, there exist integers X, Y such that $a X+b Y=c$, and explain how to obtain X and Y from x and y.
(b) Let m be a positive integer and $a \in \mathbb{Z}_{m}^{*}$. Use part (a) to prove that for every $c \in \mathbb{Z}$, there exists an integer $X \in \mathbb{Z}_{n}^{*}$ such that $a X \equiv c(\bmod m)$, and explain how to obtain X from the inverse of a modulo m.
(c) Solve the congruence $101 X \equiv 4(\bmod 7)$.
