CPSC 418/MATH 318 Practice Problems

Polynomial Arithmetic

1. Consider the two polynomials $f(x)=2 x^{4}+3 x^{3}+2 x+4$ and $g(x)=3 x^{4}+x^{2}+2 x+1$ whose coefficients belong to \mathbb{Z}_{5}. For all polynomial arithmetic involving $f(x)$ and $g(x)$, be sure to express the coefficients of resulting polynomial as elements in $\mathbb{Z}_{5}=\{0,1,2,3,4\}$.
(a) Compute $f(x)+g(x)$.
(b) Compute $f(x)-g(x)$.
(c) Compute $f(x) g(x)$.
2. Consider the two binary polynomials $f(x)=x^{3}+x^{2}+1$ and $g(x)=x^{2}+1$ whose coefficients belong to \mathbb{Z}_{2}. For all polynomial arithmetic involving $f(x)$ and $g(x)$, be sure to express the coefficients of resulting polynomial as elements in $\mathbb{Z}_{2}=\{0,1\}$.
(a) Compute the remainder of $f(x)$ when divided by $g(x)$.
(b) Compute $\operatorname{gcd}(f(x), g(x))$.
(c) Does $f(x)$ have an inverse modulo $g(x)$ with binary coefficients? If yes, compute it.
(d) Compute $f(x)^{2} g(x) \quad(\bmod m(x))$ where $m(x)=x^{8}+x^{4}+x^{3}+x+1$ is the polynomial with binary coefficients used in the construction of the Rijndael field $G F\left(2^{8}\right)$.
3. Consider the polynomial $F(x)=(0001011) x^{2}+(01110101) x+(0010010)$ whose coefficients are bytes, i.e. elements in the Rijndael field $\operatorname{GF}\left(2^{8}\right)$.
(a) Compute $G(x)=F(x)^{2}$ as a polynomial with coefficients in $G F\left(2^{8}\right)$.
(b) Compute $G(x) \quad(\bmod M(x))$ where $M(x)=x^{4}+1$ is the polynomial used for 4-byte vector arithmetic in Rijndael.
