CPSC 418/MATH 318 Practice Problems

Primitive Roots, Discrete Logarithms

Fermat's Little Theorem states that $a^{p-1} \equiv 1(\bmod p)$ for all $a \in \mathbb{Z}_{p}^{*}$. Recall that a primitive root of a prime p is an integer $g \in \mathbb{Z}_{p}^{*}$ such that the smallest positive exponent k with $g^{k} \equiv 1(\bmod p)$ is $p-1$.
An integer g is a primitive root of p if and only if the powers

$$
g^{0} \quad(\bmod p), g^{1} \quad(\bmod p), \ldots, g^{p-2} \quad(\bmod p)
$$

are all distinct and make up the entire collection of elements in $\mathbb{Z}_{p}^{*}=\{1,2, \ldots, p-1\}$.
The discrete logarithm of an element $a \in \mathbb{Z}_{p}^{*}$ (with respect to a primitive root g) is the unique integer $x \in\{0,1, \ldots, p-2\}$ with $g^{x} \equiv a \quad(\bmod p)$.

1. True or false? Verify your claims.
(a) 2 is a primitive root of 7 .
(b) 3 is a primitive root of 7
(c) 5 is a primitive root of 11 .
(d) 4 is a primitive root of 13 .
2. Use trial and error to find a primitive root of 19 .
3. Let p be a prime, $g \in \mathbb{Z}_{p}^{*}$, and $h \equiv g^{2}(\bmod p)$. Can h be a primitive root of p ? Why or why not?
4. Let p be a prime and g a primitive root of p.
(a) Is it always true that $-g$ is a primitive root of p ? Prove or give a counterexample.
(b) Is it always true that the inverse of g modulo p is a primitive root of p ? Prove or give a counterexample.
5. (a) Verify that 2 is a primitive root of 11.
(b) Use trial and error to find the discrete logarithm of 5 with respect to 2 modulo 11.
(c) Use trial and error to find the discrete logarithm of 7 with respect to 2 modulo 11.
6. Let p be a prime and g a primitive root of p.
(a) What is the discrete logarithm of 1 ?
(b) What is the discrete logarithm of g ?
(c) What is the discrete logarithm of -1 when p is odd?
