CPSC 418/MATH 318 Practice Problems

Primitive Roots, Discrete Logarithms

Fermat's Little Theorem states that $a^{p-1} \equiv 1 \pmod{p}$ for all $a \in \mathbb{Z}_p^*$. Recall that a *primitive root* of a prime p is an integer $g \in \mathbb{Z}_p^*$ such that the smallest positive exponent k with $g^k \equiv 1 \pmod{p}$ is p-1.

An integer g is a primitive root of p if and only if the powers

$$q^0 \pmod{p}, \ q^1 \pmod{p}, \dots, \ q^{p-2} \pmod{p}$$

are all distinct and make up the entire collection of elements in $\mathbb{Z}_p^* = \{1, 2, \dots, p-1\}.$

The discrete logarithm of an element $a \in \mathbb{Z}_p^*$ (with respect to a primitive root g) is the unique integer $x \in \{0, 1, \dots, p-2\}$ with $g^x \equiv a \pmod{p}$.

- 1. True or false? Verify your claims.
 - (a) 2 is a primitive root of 7.
 - (b) 3 is a primitive root of 7
 - (c) 5 is a primitive root of 11.
 - (d) 4 is a primitive root of 13.
- 2. Use trial and error to find a primitive root of 19.
- 3. Let p be a prime, $g \in \mathbb{Z}_p^*$, and $h \equiv g^2 \pmod{p}$. Can h be a primitive root of p? Why or why not?
- 4. Let p be a prime and g a primitive root of p.
 - (a) Is it always true that -g is a primitive root of p? Prove or give a counterexample.
 - (b) Is it always true that the inverse of g modulo p is a primitive root of p? Prove or give a counterexample.
- 5. (a) Verify that 2 is a primitive root of 11.
 - (b) Use trial and error to find the discrete logarithm of 5 with respect to 2 modulo 11.
 - (c) Use trial and error to find the discrete logarithm of 7 with respect to 2 modulo 11.
- 6. Let p be a prime and q a primitive root of p.
 - (a) What is the discrete logarithm of 1?
 - (b) What is the discrete logarithm of q?
 - (c) What is the discrete logarithm of -1 when p is odd?