CPSC 418/MATH 318 Practice Problems

Probability, Entropy and Perfect Secrecy

Recall that a random variable X consists of a finite collection of outcomes X_1, X_2, \ldots, X_n and a probability distribution $p(X_1), p(X_2), \ldots, p(X_n)$ such that $0 \le p(X_i) \le 1$ for $1 \le i \le n$ and $\sum_{i=1}^n p(X_i) = 1$. The entropy of X is $H(X) = \sum_{i=1}^n p(X_i) \log_2 \left(\frac{1}{p(X_i)}\right)$.

Recall also that a crytosystem provides *perfect secrecy* if p(M|C) = p(M) for all plaintexts M and ciphertexts C with p(C) > 0. By Bayes' Theorem, this is equivalent to p(C|M) = p(C) for all plaintexts M and ciphertexts C with p(M) > 0 and p(C) > 0.

- 1. Consider a six-faced die whose faces have respective colours red, red, red, blue, blue, green.
 - (a) Describe the random variable (i.e. possible outcomes and probability distribution) of a fair die throw (i.e. one where each face ends up on top with equal likelihood).
 - (b) What is the entropy of the random variable of part (a)?
 - (c) Suppose two identical such dice are thrown simultaneously. What is the probability that
 - i. both dice come up red?
 - ii. the dice come up red and blue?
 - iii. the dice come up red and some colour other than red?
- 2. Consider a cryptosystem with plaintext space $\mathcal{M} = \{X, YZ\}$, ciphertext space $\mathcal{C} = \{a, b, c, d\}$ and key space $\mathcal{K} = \{k_1, k_2, k_3\}$ that is given by the following encryption table:

Key	X	Y	Z
k_1	a	b	c
k_2	a	c	d
k_3	b	d	a

Suppose each key is chosen with equal likelihood. Suppose also that message Y occurs half the time and messages X and Z each occur 25% of the time.

- (a) For all $C \in \mathcal{C}$ and all $M \in \mathcal{M}$, compute p(C|M).
- (b) For all $C \in \mathcal{C}$, compute p(C).
- (c) Does this system provide perfect secrecy?
- (d) Compute the entropy $H(\mathcal{K})$ of the key space.
- (e) Compute the entropy $H(\mathcal{C})$ of the ciphertext space.
- 3. Consider a cryptosystem with plaintext space $\mathcal{M} = \{X, Y\}$, ciphertext space $\mathcal{C} = \{a, b, c, d\}$ and key space $\mathcal{K} = \{k_1, k_2, k_3, k_4\}$ that is given by the following encryption table:

Key	X	$\mid Y \mid$
k_1	a	b
k_2	c	d
k_3	b	a
k_4	d	c

Suppose messages and keys are equidistributed, i.e. each message occurs with probability 1/2 and each key with probability 1/4.

- (a) Prove that ciphertexts are equidistributed.
- (b) Prove that this system provides perfect secrecy.