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One-Time Pad Revisited

Recap: One-Time Pad

Definition 1 (Vernam one-time pad)

M = C = K = {0, 1}n (n ∈ N).
Encryption of M ∈ {0, 1}n under key K ∈ {0, 1}n is bitwise XOR, i.e.

C = M ⊕ K .

Decryption of C under K is done the same way, i.e. M = C ⊕ K .

Decryption is the inverse of encryption, since K ⊕ K = (0, 0, . . . , 0) and
M ⊕ (0, 0, . . . , 0) = M.
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One-Time Pad Revisited

Security of the One-Time Pad

Theorem 1

The one-time pad provides perfect secrecy if each key is chosen with equal
likelihood. Under this assumption, each ciphertext occurs with equal
likelihood (regardless of the probability distribution on the plaintext space).

Proof sketch

The first assertion follows immediately from Shannon’s Theorem
(Theorem ??). The second assertion is proved by computing p(C ) for all
C ∈ C using the formula.

This means that in the one-time pad, any given ciphertext can be
decrypted to any plaintext with equal likelihood (def’n of perfect secrecy).
There is no “distinguished” (e.g. meaningful) decryption. So even
exhaustive search doesn’t help.
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One-Time Pad Revisited

Cryptanalysis of the One-Time Pad

It is imperative that each key is only used once:

Immediately falls to a KPA: if a plaintext/ciphertext pair (M,C ) is
known, then the key is K = M ⊕ C .

Vulnerable to a COA if a key K is used twice:

C1 = M1 ⊕ K ,C2 = M2 ⊕ K =⇒ C1 ⊕ C2 = M1 ⊕M2 .

Note that this is encryption with a coherent running key cipher
(adding two coherent texts M1 and M2), which is like a Vigenère
cipher with an extremely long key word (shift rotation pattern) and
thus vulnerable to frequency analysis (can find M1 and M2 from
M1 ⊕M2).

For the same reason, we can’t use shorter keys and “re-use” portions of
them. Keys must be randomly chosen and at least as long as messages.
This makes the one-time pad impractical.
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One-Time Pad Revisited

Practical Issues

Main disadvantages of one-time pad:

requires a random key which is as long as the message

each key can be used only once.

One-time schemes are used when perfect secrecy is crucial and practicality
is less of a concern, for example, Moscow-Washington hotline.
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One-Time Pad Revisited

One-Time Pad: Conclusion

The major problem with the one-time pad is the cost. As a result, we
generally rely on computationally secure ciphers.

These ciphers would succumb to exhaustive search, because there is a
unique “distinguished” (e.g. meaningful) decipherment.

The computational difficulty of finding this solution foils the
cryptanalyst.

A proof of security does not exist for any proposed computationally
secure system (just a reduction, subject to certain assumptions, to
presumably computationally intractable problem)
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Entropy Encodings

Measuring Information

Recall that information theory captures the amount of information in a
piece of data.

Measured by the average number of bits needed to encode all possible
outcomes in an optimal prefix-free encoding.

optimal – the average number of bits is as small as possible

prefix-free – no code word is the beginning of another code word
(e.g. can’t have code words 01 and 011 for example)

Formally, the amount of information in an outcome is measured by the
entropy of the associated random variable (function of the probability
distribution over the set of possible outcomes).
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Entropy Encodings

Example

The four messages

UP, DOWN, LEFT, RIGHT

could be encoded in the following ways:

String Character Numeric Binary

“UP” “U” 1 00
“DOWN” “D” 2 01
“LEFT” “L” 3 10
“RIGHT” “R” 4 11

(40 bits) (8 bits) (16 bits) (2 bits)
(5 char string) 8-bit UTF-8 (2 byte integer) 2 bits
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Entropy Encodings

Coding Theory

In the example, all encodings carry the same information (which we will be
able to measure), but some are more efficient (in terms of the number of
bits required) than others.

Note: Huffmann encoding can be used to improve on the above example
if the directions occur with different probabilities.

This branch of mathematics is called coding theory (and has nothing to do
with the term “code” defined previously).

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 3 9 / 41

Entropy Encodings

Entropy

Definition 2

Let X be a random variable with outcomes X1,X2, . . . ,Xn and a
probability distribution

p(X1), p(X2), . . . , p(Xn) where
n∑

i=1

p(Xi ) = 1

The entropy of X is defined by the weighted average

H(X ) =
n∑

i=1
p(Xi )6=0

p(Xi ) log2

(
1

p(Xi )

)
= −

n∑
i=1

p(Xi )6=0

p(Xi ) log2 (p(Xi )) .
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Entropy Encodings

Intuition

An event occurring with probability 1/2n can be optimally encoded
with n bits.

An event occurring with probability p can be optimally encoded with
log2(1/p) = − log2(p) bits.

The weighted sum H(X ) is the expected number of bits (i.e. the
amount of information) in an optimal encoding of X (i.e. one that
minimizes the number of bits required).

If X1,X2, . . . ,Xn are outcomes (e.g. plaintexts, ciphertexts, keys)
occurring with respective probabilities p(X1), p(X2), . . . , p(Xn), then
H(X ) is the average amount of information required to represent an
outcome.
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Entropy Encodings

Example 1

Suppose n = 1 (only one outcome). Then

p(X1) = 1⇐⇒ 1

p(X1)
= 1⇐⇒ log2

1

p(X1)
= 0⇐⇒ H(X ) = 0 .

No information is needed to represent X (you already know the outcome
with certainty in advance).

In fact, for arbitrary n, H(X ) = 0 if and only of pi = 1 for exactly one i
and pj = 0 for all j 6= i (formal proof later).
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Entropy Encodings

Example 2

Suppose n > 1 and p(Xi ) > 0 for all i . Then

0 < p(Xi ) < 1 (i = 1, 2, . . . , n)

1

p(Xi )
> 1

log2

(
1

p(Xi )

)
> 0,

hence H(X ) > 0 if n > 1.

If there are at least 2 outcomes, both occurring with nonzero probability,
then some amount of information is needed to represent X .
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Entropy Encodings

Example 3

Suppose there are two possible outcomes which are equally likely:

p(heads) = p(tails) =
1

2
,

H(X ) =
1

2
log2(2) +

1

2
log2(2) = 1 .

So one bit of information is needed to represent X .

In fact, either outcome needs 1 bit of information (heads or tails).
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Entropy Encodings

Example 4

Suppose we have

p(UP) =
1

2
, p(DOWN) =

1

4
, p(LEFT ) =

1

8
, p(RIGHT ) =

1

8
.

Then
H(X ) =

1

2
log2(2) +

1

4
log2(4) +

1

8
log2(8) +

1

8
log2(8)

=
1

2
· 1 +

1

4
· 2 +

1

8
· 3 +

1

8
· 3 =

7

4
= 1.75 .

An optimal prefix-free (Huffman) encoding is

UP = 0, DOWN = 10, LEFT = 110, RIGHT = 111 .

Because UP is more probable than the other messages, receiving UP is
more certain (i.e. reveals less information) than receiving one of the other
messages. The average amount of information required is 1.75 bits.
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Entropy Encodings

Example 5

Suppose we have n outcomes which are equally likely: p(Xi ) = 1/n.

H(X ) =
n∑

i=1

1

n
log2 n = log2(n) .

So if all outcomes are equally likely, then H(X ) = log2(n).

If n = 2k (e.g. each outcome is encoded with k bits), then H(X ) = k .
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Entropy Encodings

Applications

For a random variable on a plaintext space M, its entropy measures the
uncertainty of plaintexts.

Gives the amount of partial information that must be learned about a
message in order to know its whole content when it has been

distorted by a noisy channel (coding theory) or

hidden in a ciphertext (cryptography)

For example, consider a ciphertext C = X$7PK that is known to
correspond to a plaintext M ∈M = {“heads”,“tails”} in a fair coin toss.

The random variable on M has entropy 1, so the cryptanalyst only
needs to find the distinguishing bit in the first character of M, not all
of M.
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Entropy Encodings

Extremal Entropy

Recall that the entropy of n equally likely outcomes (i.e. each occurring
with probability 1/n) is log2(n). This is indeed the maximum:

Theorem 2

H(X ) is maximized if and only if all outcomes are equally likely. That is,
for any n, H(X ) = log2(n) is maximal if and only if p(Xi ) = 1/n for
1 ≤ i ≤ n.

H(X ) = 0 is minimized if and only if p(Xi ) = 1 for or exactly one i and
p(Xj) = 0 for all j 6= i .

Intuitively, H(X ) decreases as the distribution of messages becomes
increasingly skewed.
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Entropy Encodings

Minimal Entropy – Proof

Proof.

If one probability is 1, say p(X1) = 1, and all the others are 0, then

H(X ) = −p(X1) log2(p(X1)) = −1 · 0 = 0 .

Conversely:

H(X ) = 0

⇒ p(Xi ) log2(p(Xi )) = 0 for each i with p(Xi ) > 0

⇒ log2(p(Xi )) = 0 for each i with p(Xi ) > 0

⇒ p(Xi ) = 1 for each i with p(Xi ) > 0 ,

but since all probabilities sum to one, this means there can only be one
non-zero probability which is 1.
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Entropy Encodings

Maximal Entropy – Proof Sketch

Proof.

n = 1: this is Example 1: p(X1) = 1⇐⇒ H(X ) = 0.

Arbitrary n: see Theorem 3.6, pp. 72-73, of Paterson-Stinson.

Applies Jensen’s inequality for concave functions (Theorem 3.5, p. 72
of Stinson-Paterson) to log2:

H(X ) =
∑

p(Xi ) log2

(
1

p(Xi )

)
≤ log2

(∑
p(Xi ) ·

1

p(Xi )

)
by Jensen’s inequality

= log2

(∑
1
)
≤ log2(n)

with equality iff all p(Xi ) are equal (i.e. equal to 1/n).
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Entropy Encodings

Entropy of Keys

The entropy of the random variable on a key space K measures the
amount of partial information that must be learned about a key to actually
uncover it (e.g. the number of bits that must be guessed correctly to
recover the whole key).

For a k-bit key, the best scenario is that all k bits must be guessed
correctly to know the whole key (i.e. no amount of partial information
reveals the key, only full information does).

Entropy of the random variable on the key space should be maximal.

By Theorem 2, this happens exactly when each key is equally likely.

Best strategy to select keys in order to give away as little as possible
is to choose them with equal likelihood (uniformly at random).

Cryptosystems are assessed by their key entropy, which ideally should just
be the key length in bits (i.e. maximal).
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Entropy Encodings

Example: Plaintext Versus Key Entropy

M = {0, 1} (bits)

C = K = {0, 1}1,000,000 (bit strings of length one million)

For each key K , the encryptions of ‘0’ and ‘1’ under K differ by at
least one bit (because encryptions are injective).

Knowledge of the value of one distinguishing bit for every encryption
makes it possible to deduce the correct plaintext from any ciphertext.
For example, if an attacker intercepts the ciphertext

C = 010110 · · · 111001

and has knowledge that the 3rd bit of the encryption of ‘0’ under the
(unknown) key that was used is 1, then she knows that C is the
encryption of ‘1’ (without knowing which key was used).

So on average, one ciphertext bit reveals the entire plaintext.

Plaintext entropy is 1, even though the key entropy may be as much as
1,000,000.
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Entropy Encodings

Lessons Learned from Previous Example

The security level (i.e. key entropy) of a cryptosystem may not tell
the whole story in some applications and may in fact convey a false
sense of security.

Small message spaces are problematic (more later).

The concept of indistinguishability is crucial in the context of security
(more later).
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Product Ciphers

Product Ciphers

Shannon also introduced the idea of product ciphers (multiple encryption):

Definition 3 (Product cipher)

The product of two ciphers is the result of applying one cipher followed by
the other.

AKA superencipherment and various other names.

Note: All modern symmetric key ciphers in use are product ciphers.
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Product Ciphers

Properties of Product Ciphers

If different ciphers are used in a product cipher, ciphertexts of one cipher
need to have the correct format to be plaintexts for the next cipher to be
applied.

This is composition of encryption maps.

Applying a product cipher potentially increases security. E.g. n-fold
encryption with one cipher and n keys potentially corresponds to a cipher
that has n times longer keys.

Of course it also results in a loss of speed by a factor of n, but this might
be worth it for added security.
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Product Ciphers

Caveat

Be careful with this reasoning!

Note 1

The product of two substitution ciphers is a substitution cipher. The
product of two transposition ciphers is a transposition cipher.

Such ciphers are closed under encryption, so multiple encryption under
different keys provides no extra security:

E.g. double encryption EK1(EK2(M)) = EK3(M) for a third key K3.
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Product Ciphers

Confusion and Diffusion

Shannon suggested applying two simple (substitution) ciphers with a fixed
mixing transformation (transposition) in between to

diffuse language redundancy into long-term statistics and

confuse the cryptanalyst by obscuring the relationship between the
ciphertext and the key.

Definition 4 (Confusion)

Make the relationship between the key and ciphertext as complex as
possible (accomplished by applying substitutions or S-boxes).

Definition 5 (Diffusion)

Dissipate the statistical properties of the plaintext across the ciphertext
(accomplished by applying transpositions or P-boxes).
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Product Ciphers

Examples of Historic Product Ciphers

ADFGX/ADFGVX Ciphers – employed by the Germans in WW I

Hayhanen Cipher

Reino Hayanen was KGB officer who defected to the US in 1957 and
solved the hollow nickel espionage case for the FBI (who couldn’t
break the cipher!)

This led to arrest of Russian spy Rudolph Abel and the 1961 prisoner
exchange of Abel for US Air Force pilot Francis Powers whose U-2 spy
plane was shot down over Russia in 1960

Inspired Steven Spielberg’s 2015 movie Bridge of Spies (which
portrayed Hayhanen rather unfavourably)
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Product Ciphers

Examples of Modern Product Ciphers

Example 6

IBM’s Lucifer system uses permutations (transpositions) on large blocks for
the mixing transformation, and substitution on small blocks for confusion.

This type of design is called a Feistel network, after Lucifer’s designer
Horst Feistel.

Feistel originally wanted to call the product cipher “Dataseal”.

IBM instead shortened the term demonstration cipher to “Demon.”

Later, it was changed to Lucifer, because it retained the “evil atmosphere”
of Demon, and (more or less) contained the word cipher.
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Product Ciphers

Lucifer: P-boxes and S-boxes

Since Lucifer was set up in hardware, they called the chips which did the
permutation “P-boxes” and those that did the substitution “S-boxes.”
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The Lucifer system simply consisted of a number of P and S boxes in
alternation.
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Product Ciphers

Diffusion in Lucifer
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The thicker lines in the graphic indicate how the first input bit ‘1’
dissipates over the entire ciphertext.
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Product Ciphers Error Propagation

Error Propagation

Definition 7 (Error Propagation)

The degree to which a change in the input leads to changes in the output.

Definition 8 (Avalanche Effect)

Changing one input bit leads to significant changes in the output (e.g. half
the output bits flip).

Good error propagation is a desirable property of a cryptosystem (a user
can easily tell if a message has been modified).

Not necessarily good for decryption though (where one might want one
error in the process to still lead to a mostly correct decryption).
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Block Ciphers

Block Ciphers

All modern ciphers in use are block ciphers (although not necessarily used
as such — we’ll talk about modes of operation of block ciphers in Week 5).

Definition 9 (Block cipher)

Encrypts plaintext blocks of some fixed length to ciphertext blocks of
some fixed (possibly different) length.

Usually, a message M will be larger than the plaintext block length, and
must hence be divided into a series of sequential message blocks
M1,M2, . . . ,Mn of the desired length.

A block cipher operates on these blocks one at a time.

May need to pad last block Mn to the block length
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Block Ciphers

Examples of Block Ciphers

Example 10

The shift cipher is a block cipher where the blocks consists of one
character (i.e. 8 bits on 32-bit architecture, 16 bits on 64-bit architecture).

Two main block ciphers in use today:

Data Encryption Standard (DES)

Obsolete (key space too small)
Still used in legacy code as triple encipherment (3DES)

Advanced Encryption Standard (AES)
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Block Ciphers Data Encryption Standard

NIST

NIST: National Institute of Standards and Technology

Everything about NIST’s cryptographic standards, recommendations, and
guidance can be found at the NIST cryptographic standards and guidelines
website
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines.

Extremely useful website for both practitioners and scholars of
cryptography.

There is a link on the “references” page on the course website.

NIST Publications:

Older designation: FIPS (Federal Information Processing Register)

Newer designation: SP (Special Publication)

All the crypto publications appear under SP 800
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Block Ciphers Data Encryption Standard

Data Encryption Standard (DES)

Described in FIPS 46, 46-2, 46-3 (see also docs on “handouts” page)

Developed by IBM around 1972 in secret (based on Lucifer), with
input from NSA

Block cipher that encrypts 64-bit plaintext blocks to 64-bit ciphertext
blocks using 64-bit keys.

Note that 8 of the key bits are parity bits, resulting in 56 actual bits of
the key.

So M = C = {0, 1}64 and K = {0, 1}56.

Algorithm consists of 16 rounds of permutations and substitutions

DESKey (M) = IP−1(S16(S15(. . . (S2(S1(IP(M)))) . . . )))
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Block Ciphers Data Encryption Standard

Multiple DES Encryption

What about multiple DES encryptions? Does this foil exhaustive attacks
due to longer key sizes?

Campbell and Wiener (1992) proved that DES is not closed, so multiple
DES encryptions/decryptions could potentially provide additional security.

size of the group generated by all the keys (i.e. the number of distinct
encryptions obtained by applying repeated DES encryptions) has been
shown to have size at least 102499 ≈ 28302. (Estimated number of
atoms in the universe: 2240.)

Later, we will show that on double encryption is essentially no more secure
than single encryption (but twice as slow).

What about three DES encryption? 3DES (triple DES) is still used.
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Block Ciphers Data Encryption Standard

Triple DES

Use three successive DES operations: C = EK1(DK2(EK3(M)))

See NIST Special Publication SP 800-67.

Advantages:

Same as single key if K2 = K1 or K2 = K3.

Exhaustive search has complexity 2112 via the meet-in-the-middle
attack (see Week 5), but with a 168-bit key and a factor of 3 in speed.

Can use K1 = K3 with no loss of security.

No other known practical attacks.

The main disadvantage is that 3-DES is three times slower than single key
DES while only doubling the key size.
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Block Ciphers Data Encryption Standard

Skipjack and the Clipper Chip

A lesson on how not to introduce standardized crypto!

After DES became obsolete, the United States National Security Agency
(NSA) wanted to take control of the cipher standard selection process

Proposed the Skipjack Algorithm implemented on the Clipper Chip

Standardized by NIST as Escrowed Encryption Standard (EES) in
Feb. 1994 (see FIPS 185) and still used by US Government.

The details of Clipper and Skipjack were initially classified and kept secret.

Due to the secrecy and wide distrust of the NSA in the US and abroad,
this cipher never caught on in the public sector.
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Block Ciphers Advanced Encryption Standard

AES Competition

A lesson on how to definitely introduce standardized crypto!

In 1997, NIST initiated a world-wide process of candidate submission and
evaluation for the Advanced Encryption Standard to replace DES.

The process was completely transparent and public!

Requirements:

possible key sizes of 128, 192, and 256 bits

plaintexts and ciphertexts of 128 bits

should work on a wide variety of hardware (from chip cards to
supercomputers)

fast

secure

world-wide royalty-free availability (!)
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Block Ciphers Advanced Encryption Standard

Selection Criteria

Candidates were selected according to:

security – resistance against all known attacks

cost — speed and code compactness on a wide variety of platforms

simplicity of design

Most important: public evaluation process

series of three conferences: algorithms, attacks, evaluations presented
and discussed

21 submissions from all over the world evaluated during 1998-1999

final selection done by NIST
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