CPSC 418/MATH 318 Introduction to Cryptography Advanced Encryption Standard

Renate Scheidler

Department of Mathematics & Statistics Department of Computer Science University of Calgary

Week 4

I've got a better-than-Cinderella story as I made my way to become king of the block cipher world.

Advanced Encryption Standard, Cryptanalysis of Block Ciphers

AES Competition

A lesson on how to **definitely** introduce standardized crypto!

In 1997, NIST initiated a world-wide process of candidate submission and evaluation for the *Advanced Encryption Standard* to replace DES.

The process was completely transparent and public!

Requirements:

- possible key sizes of 128, 192, and 256 bits
- plaintexts and ciphertexts of 128 bits
- should work on a wide variety of hardware (from chip cards to supercomputers)
- fast
- secure
- world-wide royalty-free availability (!)

Outline

- Advanced Encryption Standard, Cryptanalysis of Block Ciphers
- 2 Arithmetic on Bytes and 4-Byte Vectors
- The Rijndael Algorithm
 - Overview
 - Description of the Algorithm
- 4 AES Key Schedule and Decryption
 - Key Schedule
 - Decryption
- 5 Strengths and Weaknesses of Rijndael
- 6 Attacks on Block Ciphers
 - Exhaustive Attacks

Renate Scheidler (University of Calgary)

CPSC 418/MATH 318

Week 1

1 / 39

Advanced Encryption Standard, Cryptanalysis of Block Ciphers

Selection Criteria

Candidates were selected according to:

- security resistance against all known attacks
- cost speed and code compactness on a wide variety of platforms
- simplicity of design

Most important: public evaluation process

- series of three conferences: algorithms, attacks, evaluations presented and discussed
- 21 submissions from all over the world evaluated during 1998-1999
- final selection done by NIST

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 4 2/38 Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 4 3

The Winner: Rijndael

Rijndael (pronounced "Reign Dahl" or "Rhine Dahl", but NOT "Region Deal" was chosen by NIST.

- Inventors: Vincent Rijmen and Joan Daemen.
- Standardized as AES in 2001 (FIPS 197)
- See also docs on "handouts" page.

The Rijndael algorithm uses two different types of arithmetic:

- Arithmetic on bytes (8 bit vectors actually, elements of the finite field $GF(2^8)$ of 256 elements)
- 4-byte vectors (actually polynomial operations over $GF(2^8)$).

Rijndael's structure is a *substitution-permutation network*, not a Feistel network. In addition to permutations, it uses one big S-box rather than many small ones acting on substrings.

Renate Scheidler (University of Calgary)

CPSC 418/MATH 318

Week 4

4 / 38

Arithmetic on Bytes and 4-Byte Vectors

Arithmetic on Bytes

Consider a byte $b=(b_7,b_6,\ldots,b_1,b_0)$ (an 8-bit vector) as a polynomial with coefficients in $\{0,1\}$:

$$b \mapsto b(x) = b_7 x^7 + b_6 x^6 + \dots + b_1 x + b_0$$

Rijndael makes use of the following operations on bytes, interpreting them as polynomials:

- Addition
- Modular multiplication
- Inversion

Under these operations, polynomials of degree ≤ 7 with coefficients in $\{0,1\}$ form the *field GF*(2^8).

By associating bytes with these polynomials, we obtain these operations on bytes.

Advanced Encryption Standard, Cryptanalysis of Block Ciphers

Rijndael - Round Overview

The algorithm uses addition, multiplication, and inversion on bytes as well as addition and multiplication of 4 byte vectors.

Rijndael is a product cipher, but NOT a Feistel cipher like DES. Instead, it has three *layers* per round:

- a linear mixing layer (SHIFTROWS, transposition, and MIXCOLUMNS, a linear transformation; for diffusion over multiple rounds)
- a non-linear layer (SubBytes, substitution, done with an S-box)
- a key addition layer (ADDROUNDKEY, X-OR with key)

Check out the story of AES in the form of a four-act play involvin stick figures at http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html

Renate Scheidler (University of Calgary)

CPSC 418/MATH 3

Mark 1

5/3

Arithmetic on Bytes and 4-Byte Vectors

Addition of Bytes in Rijndael

Polynomial addition takes X-OR (addition mod 2) of coefficients:

The sum of two polynomials taken in this manner yields another polynomial of degree ≤ 7 .

In other words, component-wise X-OR of bytes is identified with this addition operation on polynomials.

Renate Scheidler (University of Calgary)

CPSC 418/MATH 318

Week 4

6 / 38

Renate Scheidler (University of Calgary)

CPSC 418/MATH 318

Week 4

Modular Multiplication in Rijndael Inversion of Bytes in Rijndael

Polynomial multiplication (coefficients are in $\{0,1\}$) is taken modulo

$$m(x) = x^8 + x^4 + x^3 + x + 1$$

(remainder when dividing by m(x), analogous to modulo arithmetic with integers).

The remainder when dividing by a degree 8 polynomial will have degree \leq 7. Thus, the "product" of two bytes is associated with the product of their polynomial equivalents modulo m(x).

Note 1

m(x) is the lexicographically first polynomial that is *irreducible* over GF(2), *i.e.* does not split into two polynomials of smaller positive degree with coefficients in $\{0,1\}$.

Renate Scheidler (University of Calgary

CPSC 418/MATH 318

Week 4

8 / 38

Arithmetic on Bytes and 4-Byte Vectors

Arithmetic on 4-byte Vectors

In Rijndael's MIXCOLUMN operation, 4-byte vectors are considered as degree 3 polynomials with coefficients in $GF(2^8)$. That is, the 4-byte vector (a_3, a_2, a_1, a_0) is associated with the polynomial

$$a(y) = a_3y^3 + a_2y^2 + a_1y + a_0,$$

where each coefficient is a byte viewed as an element of $GF(2^8)$ (addition, multiplication, and inversion of the coefficients is performed as described above).

Inversion of Bytes in Rijndael

Arithmetic on Bytes and 4-Byte Vectors

 $b(x)^{-1}$, the inverse of $b(x) = b_7x^7 + b_6x^6 + \cdots + b_1x + b_0$, is the polynomial of degree ≤ 7 with coefficients in $\{0,1\}$ such that

$$b(x)b(x)^{-1} \equiv 1 \pmod{m(x)}.$$

Note that this is completely analogous to the case of integer arithmetic modulo n.

The "inverse" of the byte $b = (b_7, b_6, \dots, b_1, b_0)$ is the byte associated with the inverse of $b(x) = b_7 x^7 + b_6 x^6 + \dots + b_1 x + b_0$.

Rijndael uses inverse as above in its SubByte operation.

Renate Scheidler (University of Calgary)

CPSC 418/MATH 318

Week 4

0/39

Arithmetic on Bytes and 4-Byte Vectors

Operations on 4-byte Vectors

We have the following operations on these polynomials:

- addition: component-wise "addition" of coefficients (addition as described above)
- ② multiplication: polynomial multiplication (addition and multiplication of coefficients as described above) modulo $M(y) = y^4 + 1$. Result is a degree 3 polynomial with coefficients in $GF(2^8)$.

Note 2

Using $M(y) = y^4 + 1$ makes for very efficient arithmetic (simple circular shifts)

Arithmetic on Bytes and 4-Byte Vectors

Examples for Rijndael Arithmetic

Example 1

Let $b_1 = (10001110)$ and $b_2 = (00001101)$ be bytes. Compute $b_3 = b_1 + b_2$ and $b_4 = b_1 b_2$ in the Rijndael field GF(2⁸).

Example 2

Let =(00000001, 00000000, 10001110, 00000010) and =(00000000, 00000001, 00001101, 00000000)

be vectors whose entries are bytes in the Rijndael field $GF(2^8)$. Compute $a_3 = a_1 + a_2$ and $a_4 = a_1 a_2$ using Rijndael's arithmetic on 4-byte vectors.

See the Rijndael arithmetic examples handout on the "handouts" page.

Renate Scheidler (University of Calgary)

The Rijndael Algorithm

Rijndael Properties

Designed for block sizes and key lengths to be any multiple of 32, including those specified in the AES.

Iterated cipher: number of rounds N_r depends on the key length. 10 rounds for 128-bit keys, 12 rounds for 192-bit keys, and 14 rounds for 256-bit keys.

Algorithm operates on a 4×4 array of bytes (8 bit vectors) called the state:

<i>s</i> _{0,0}	<i>s</i> _{0,1}	<i>s</i> _{0,2}	<i>s</i> _{0,3}
<i>s</i> _{1,0}	<i>s</i> _{1,1}	<i>s</i> _{1,2}	<i>s</i> _{1,3}
<i>s</i> _{2,0}	<i>s</i> _{2,1}	<i>s</i> _{2,2}	<i>s</i> _{2,3}
<i>s</i> _{3,0}	<i>s</i> _{3,1}	<i>s</i> _{3,2}	<i>s</i> _{3,3}

Rijndahl Overview

Graphic taken with modifications from the cover of NIST GCR 18-017 "The Economic Impacts of the Advanced Encryption Standard, 1996-2017" (NIST, September 2018)

Renate Scheidler (University of Calgary)

The Rijndael Algorithm

AES Initialization

The Rijndael algorithm (given plaintext M) proceeds as follows:

Initialize State with M:

<i>s</i> _{0,0}	<i>s</i> _{0,1}	<i>s</i> _{0,2}	<i>s</i> _{0,3}
<i>s</i> _{1,0}	<i>s</i> _{1,1}	<i>s</i> _{1,2}	<i>s</i> _{1,3}
<i>s</i> _{2,0}	<i>s</i> _{2,1}	<i>s</i> _{2,2}	<i>s</i> _{2,3}
<i>s</i> _{3,0}	<i>s</i> _{3,1}	<i>s</i> _{3,2}	<i>s</i> _{3,3}

m_0	m_4	<i>m</i> ₈	m_{12}		
m_1	m_5	<i>m</i> ₉	m_{13}		
m_2	m_6	m_{10}	m ₁₄		
m_3 m_7		m_{11}	m_{15}		

where M consists of the 16 bytes m_0, m_1, \ldots, m_{15} .

The Rijndael Algorithm

AES Algorithm

On input the State whose columns are the 16 message bytes:

- 2 Perform ADDROUNDKEY, which X-OR's the first RoundKey with State.
- **3** For each of the first $N_r 1$ rounds:
 - Perform SubBytes on State (using an S-box on each byte of State).
 - Perform SHIFTROWS (a permutation) on State,
 - Perform MIXCOLUMNS (a linear transformation) on State,
 - Perform ADDROUNDKEY.
- For the last round:
 - Perform Subbytes.
 - Perform ShiftRows.
 - Perform ADDROUNDKEY.
- Of Define the ciphertext C to be State (using the same byte ordering).

Renate Scheidler (University of Calgary)

The Rijndael Algorithm Description of the Algorithm

The Subbytes Affine Transformation

An affine transformation first multiplies a vector by a matrix (i.e. a linear transformation) and then adds a vector to the result (which makes it non-linear)

The affine transformation in SubBytes is given as follows:

$$\begin{bmatrix} b_0' \\ b_1' \\ b_2' \\ b_3' \\ b_4' \\ b_5' \\ b_6' \\ b_7' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \\ b_6 \\ b_7 \end{bmatrix} \oplus \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

The SUBBYTES Operation

Each byte of State is substituted independently, using an invertible S-box (see p. 16 of FIPS 197 for the exact S-Box).

Algebraically, Subbytes performs on each byte:

- an inversion as described above (the inverse of the zero byte is defined to be zero here), followed by
- an affine transformation, i.e. a linear transformation (multiplication by a matrix) followed by the addition of a fixed vector. More exactly, the *i*-th bit of the output byte is

$$b'_i = b_i \oplus b_{i+4 \mod 8} \oplus b_{i+5 \mod 8} \oplus b_{i+6 \mod 8} \oplus b_{i+7 \mod 8} \oplus c_i$$

where b_i is the *i*-th input bit and c_i is the i^{th} -th bit of c = (11000110).

Renate Scheidler (University of Calgary)

The Rijndael Algorithm

Description of the Algorithm

Inverse of SUBBYTES

The inverse of Subbytes (called InvSubbytes) applies the inverse S-box to each byte in the State (see p. 22 of FIPS 197 for the inverse of the S-Box).

Algebraically, you first apply the inverse affine transformation (add the vector, then multiply by the inverse of the matrix) to each byte and then perform byte inversion.

The SHIFTROWS Operation

Shifts the first, second, third, and last rows of State by 0, 1, 2, or 3 cells to the left, respectively:

<i>s</i> _{0,0}	<i>s</i> _{0,1}	<i>s</i> _{0,2}	<i>s</i> _{0,3}		<i>s</i> _{0,0}	<i>s</i> _{0,1}	<i>s</i> _{0,2}	<i>s</i> _{0,3}
$s_{1,0}$	$s_{1,1}$	<i>s</i> _{1,2}	<i>s</i> _{1,3}	_	$s_{1,1}$	<i>s</i> _{1,2}	<i>s</i> _{1,3}	<i>s</i> _{1,0}
<i>s</i> _{2,0}	<i>s</i> _{2,1}	<i>s</i> _{2,2}	<i>s</i> _{2,3}	3,3	<i>s</i> _{2,2}	<i>s</i> _{2,3}	<i>s</i> _{2,0}	<i>s</i> _{2,1}
<i>s</i> _{3,0}	<i>s</i> _{3,1}	<i>s</i> _{3,2}	2 <i>s</i> _{3,3}		<i>5</i> 3,3	<i>s</i> _{3,0}	<i>s</i> _{3,1}	<i>s</i> _{3,2}

The inverse operation INVSHIFTROWS applies right shifts instead of left shifts.

Renate Scheidler (University of Calgary)

The Rijndael Algorithm Description of the Algorithm

MIXCOLUMNS: Algebraic Description

MIXCOLUMNS can also be described as a linear transformation applied to each column of State, i.e. multiplying each 4-element column vector by the 4×4 matrix

$$\left(\begin{array}{ccccc}
2 & 3 & 1 & 1 \\
1 & 2 & 3 & 1 \\
1 & 1 & 2 & 3 \\
3 & 1 & 1 & 2
\end{array}\right)$$

Note that rows 0, 1, 2, 3 of this matrix are circular shifts of row 0 by 0, 1, 2, 3 cells to the right.

The MIXCOLUMNS Operation

Each column of State is a 4-byte vector which can be interpreted as a four-term polynomial with coefficients in $GF(2^8)$ as described above. For example:

$$(s_{0,0}, s_{1,0}, s_{2,0}, s_{3,0}) \mapsto s_{3,0}y^3 + s_{2,0}y^2 + s_{1,0}y + s_{0,0} = col_0(x)$$
.

MIXCOLUMNS multiplies $col_i(y)$ by a polynomial c(y) using the 4-byte vector multiplication modulo $y^4 + 1$ described earlier, resulting in a new 4-byte column. Here

$$c(y) = 3y^3 + y^2 + y + 2$$
 in hexadecimal
= $00000011 y^3 + 00000001 y^2 + 00000001 y + 00000010$ in binary

Renate Scheidler (University of Calgary)

The Rijndael Algorithm Description of the Algorithm

INVMIXCOLUMNS: Algebraic Description

The inverse (called INVMIXCOLUMNS) multiplies each column of State by the inverse of $c(v) \pmod{v^4+1}$ which is

$$c^{-1}(y) = By^3 + Dy^2 + 9y + E$$

in hex notation.

It can also be described as multiplication by the following matrix (in hex):

$$\left(\begin{array}{ccccc}
E & B & D & 9 \\
9 & E & B & D \\
D & 9 & E & B \\
B & D & 9 & E
\end{array}\right)$$

The AddRoundKey Operation

In ADDROUNDKEY, each column of State is X-ORed with one word of the round kev:

$$col_j \leftarrow col_j \oplus w_{4i+j}$$
 $(0 \le i \le N_r - 1, \ 0 \le j \le 3)$

5 0,0	s _{0,1}	s 0,2	5 0,3		S 0,0	s _{0,1}	S 0,2	S 0,3] [W _{0,4i}	$w_{0,4i+1}$	$W_{0,4i+2}$	$W_{0,4i+3}$
<i>s</i> _{1,0}	<i>s</i> _{1,1}	<i>s</i> _{1,2}	s _{1,3}	,	<i>s</i> _{1,0}	<i>s</i> _{1,1}	<i>s</i> _{1,2}	s _{1,3}	Д	$W_{1,4i}$	$W_{1,4i+1}$	$W_{1,4i+2}$	$W_{1,4i+3}$
s _{2,0}	s _{2,1}	s _{2,2}	s _{2,3}] ←	<i>s</i> _{2,0}	s _{2,1}	s _{2,2}	s _{2,3}	Φ	W _{2,4} i	W _{2,4i+1}	$W_{2,4i+2}$	$W_{2,4i+3}$
5 3,0	5 3,1	5 3,2	5 3,3		5 3,0	5 3,1	5 3,2	5 3,3		W _{3,4} i	$W_{3,4i+1}$	$W_{3,4i+2}$	$W_{3,4i+3}$

where $w_{4i+j} = (w_{0,4i+j}, w_{1,4i+j}, w_{2,4i+j}, w_{3,4i+j}), 0 \le j \le 3$ are the four 4-byte key words for round i, $0 < i < N_r - 1$.

ADDROUNDKEY is clearly its own inverse.

Renate Scheidler (University of Calgary)

CPSC 418/MATH 318

Renate Scheidler (University of Calgary)

CPSC 418/MATH 318

AES Key Schedule and Decryption

KEYEXPANSION

Produces an expanded key consisting of the required 44 words (assuming 128-bit key).

In the following, the key $K = (k_0, k_1, k_2, k_3)$, where the k_i are 4-byte words, and the expanded key is denoted by the word-vector $(w_0, w_1, w_2, \ldots, w_{43}).$

- **1** for $i \in \{0, 1, 2, 3\}$, $w_i = k_i$
- ② for $i \in \{4, ..., 43\}$:

$$w_i = w_{i-4} \oplus \begin{cases} \text{SubWord}(\text{RotWord}(w_{i-1})) \oplus \text{Rcon}_{i/4} & \text{if } 4 \mid i \\ w_{i-1} & \text{otherwise} \end{cases}$$

Key Schedule

The key schedule uses:

- the S-box from SubBytes
- cyclic left shifts by one byte on 4-byte vectors
- multiplication by powers of x (each such power is interpreted as first byte of a 4-byte vector whose other bytes are 0)

Consider 128-bit Rijndael. There are 10 rounds plus one preliminary application of ADDROUNDKEY, so the key schedule must produce 11 round keys, each consisting of four 4-byte words, from the 128-bit key (16 bytes).

AES Key Schedule and Decryption

KEYEXPANSION (cont'd)

The components of KEYEXPANSION are:

- ROTWORD is a one-byte circular left shift on a word.
- SUBWORD performs a byte substitution (using the S-box SUBBYTES on each byte of its input word).
- RCON is a table of round constants (RCON; is used in round i). Each is a word with the three right-most bytes equal to 0 and the left-most byte a power of x
 - Corresponding to polynomials $R(y) = by^3$ where b(x) = some power of x

KEYEXPANSION is similar for 192 and 256-bit keys.

AES Key Schedule and Decryption Decry

Decryption

To decrypt, perform cipher in reverse order, using inverses of components and the reverse of the key schedule:

- **1** AddRoundKey with round key N_r
- 2 For rounds $N_r 1$ to 1:
 - InvShiftRows
 - InvSubBytes
 - ADDROUNDKEY
 - InvMixColumns
- For round 1 :
 - InvShiftRows
 - InvSubBytes
 - ADDROUNDKEY using round key 1

Note 3

Straightforward inverse cipher has a different sequence of transformations in the rounds. It is possible to reorganize this so that the sequence is the same as that of encryption (see A2 of FIPS-197).

Renate Scheidler (University of Calgary)

CPSC 418/MATH 318

Week 4

28 / 38

Strengths and Weaknesses of Rijndael

Strengths (cont'd)

Secure key schedule (great confusion):

- Knowledge of part of the cipher key or round key does not enable calculation of many other round key bits
- Each key bit affects many round key bits

Very low memory requirements

Very fast (hardware and software)

Strengths and Weaknesses of Rijndael

Strengths of Rijndael

Secure against all known attacks at the time; some newer attacks seem to pose no real threat

Non-linearity resides in S-boxes (SUBBYTES):

- Linear approximation and difference tables are close to uniform (thwarting linear and differential cryptanalysis more later)
- No fixed points (S(a) = a) or opposite fixed points $(S(a) = \overline{a})$
- Not an involution $(S(S(a)) \neq a$, or equivalently, $S(a) = S^{-1}(a)$

SHIFTROWS and MIXCOLUMNS ensure that after a few rounds, all output bits depend on all input bits (great diffusion).

Renate Scheidler (University of Calgary)

CPSC 418/MATH 318

leek 4

20 / 39

Strengths and Weaknesses of Rijndael

Weaknesses of Rijndael

Decryption is slower than encryption.

Decryption algorithm is different from encryption (requires separate circuits and/or tables).

 Depending on the mode of operation, however, this may not be an issue (i.e. OFB, CTR, CFB) since only encryption is used in these modes.

Strengths and Weaknesses of Rijndae

Security of AES

There is no mathematical proof that AES is secure

All we know is that in practice, it withstands all modern attacks.

Next: an overview of modern attacks on block ciphers

Renate Scheidler (University of Calgary)

CPSC 418/MATH 318

Attacking Block Ciphers – Exhaustive Search

Attacks on Block Ciphers

Brute-force search for the key is the simplest attack on a block cipher.

Set $N = |\mathcal{K}|$ (number of keys).

Simple exhaustive search (COA) — requires up to N encryptions

- feasible for DES: $N = 2^{56} \approx 10^{17}$ possible keys.
- infeasible for 3DES: $N=2^{112}\approx 10^{34}$ possible key combinations.
- infeasible for AES: $N=2^{128}\approx 10^{38}$ possible keys

Parallelism can speed up exhaustive search.

Perspective on 10³⁸: number of molecules in 3 trillion liters of water (almost 2 Lake Ontarios) number of stars in a quadrillion universes

Renate Scheidler (University of Calgary)

Attacks on Block Ciphers Exhaustive Attacks

Hellman's Time-Memory Tradeoff (1980)

KPA that shortens search time by using a lot of memory (details omitted here).

- The attacker knows a plaintext/ciphertext pair (M_0, C_0) .
- The goal is to find the (or a) key K such that $C_0 = E_K(M_0)$.

Expected approximate cost (# of test encryptions) is

Precomputation time: $N^{2/3}$ Expected time: $N^{2/3}$ Expected memory:

Large precomputation time, but improvement for individual keys

• For DES, $N^{2/3} \approx 10^{12}$ — can be done in hours or even minutes on a modern computer.

Attacks on Block Ciphers Exhaustive Attacks

Meet-in-the-Middle Attack on Double Encryption

Naïve exhaustive search for double encryption requires up to N^2 encryptions (N^2 key pairs).

The meet-in-the-middle attack is a much faster KPA, but more memory-intense.

Setup:

- Adversary has two known plaintext/ciphertexts pairs (m_1, c_1) , (m_2, c_2) (one for key search, the other for checking correct guess)
- Assume double-encryption: $c_i = E_{k_1}(E_{k_2}(m_i))$ for i = 1, 2,where k_1 , k_2 are two unknown keys.

Important observation: $D_{k_1}(c_i) = E_{k_2}(m_i)$ for i = 1, 2.

Renate Scheidler (University of Calgary)

CPSC 418/MATH 318

Week 4

Renate Scheidler (University of Calgary)

CPSC 418/MATH 318

Attacks on Block Ciphers

Exhaustive Attacks

The Attack

The adversary proceeds as follows:

- Single-encrypt m_1 under every key K_i to compute $C_i = E_{K_i}(m_1)$ for $1 \le i \le N$.
- ② Sort the table (or create a hash table or look-up table) of all the C_i , $1 \le i \le N$.
- For j = 1 to N do
 - Single-decrypt c_1 under key K_i to compute $M_i = D_{K_i}(c_1)$.
 - **5** Search for M_i in the table of C_i . If $M_i = C_i$ for some i, i.e. $D_{K_i}(c_1) = E_{K_i}(m_1)$, then check if $D_{K_i}(c_2) = E_{K_i}(m_2)$. If yes, then guess $k_2 = K_i$ and $k_1 = K_i$ and quit.

Renate Scheidler (University of Calgary)

CPSC 418/MATH 318

Renate Scheidler (University of Calgary)

Attacks on Block Ciphers

Exhaustive Attacks

Analysis (cont'd)

Time required:

- Step 1: *N* encryptions
- Step 2: of order N (hash table) or N log(N) (sorting)
- Step 3 a: at most N decryptions
- Step 3 b: negligible in light of Step 2

Total: 2N encryptions/decryptions plus table creation

Memory: N keys and corresponding ciphertexts (the table of (C_i, K_i) pairs)

Conclusion: double encryption offers little extra protection over single encryption (hence 3DES instead of 2DES).

Analysis

There are at most N values $E_{K_i}(m_1)$ and at most N values $D_{K_i}(c_1)$ for $1 \leq i, j \leq N$.

- Assuming random distribution, the chances of a match are 1/N.
- Thus, $(N \cdot N)/N = N$ key pairs (K_i, K_i) satisfy $E_{K_i}(m_1) = D_{K_i}(c_1)$.

The chances that such a key pair also satisfies $E_{K_i}(m_2) = D_{K_i}(c_2)$ are very small (paranoid users could try a third message/ciphertext pair (m_3, c_3)).

Thus, the probability of guessing correctly is very high.

Attacks on Block Ciphers

CPSC 418/MATH 318