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Attacks on Block Ciphers Analytic Attacks

Differential cryptanalysis

Biham and Shamir, Journal of Cryptology, 1991 — KPA

Compares input XORs to output XORs, and traces these differences
through the cipher.

Both linear and differential cryptanalysis work quite well on DES with
fewer than 16 rounds.

The first edition of Doug Stinson’s book “Cryptography – Theory and
Practice” (1995) discusses successful differential cryptanalysis attacks
on 3-round and 6-round DES.

Large-scale, parallel, brute-force attack is still the most practical
attack on 16-round DES.

DES was designed to be resistant against differential cryptanalysis (“T” or
“Tickle” attack). IBM and NSA knew about differential cryptanalysis.
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Attacks on Block Ciphers Analytic Attacks

Linear Cryptanalysis

M. Matsui, EUROCRYPT 1993 – CCA

Matsui actually used this method to become the first person to
recover a DES key (50 days using 12 workstations).

Definition 1

A cryptosystem is affine (linear) if encryptions are affine (linear) functions
relating plaintexts to ciphertexts.

Affine equation: C = AM + B
Linear equation: C = AM (i.e. B = 0)

where A and B are matrices of appropriate dimensions.

Idea: A and B reveal information about the key used to encrypt M to C .
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Attacks on Block Ciphers Analytic Attacks

Attacking Affine and Linear Cryptosystems

A cryptanalyst can try to mount a CPA on an affine or linear system by
obtaining sufficiently many plaintext/ciphertext pairs (Mi ,Ci ) to deduce A
and B from the equations

Ci = AMi + B , i = 1, 2, 3, . . .

Examples of linear and affine cipher building blocks:

transpositions — linear

SubBytes operation in AES — affine on bytes

See Section 4.3.3 of Stinson-Paterson for an actual linear attack on a
small substitution-permutation network.
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Attacks on Block Ciphers Analytic Attacks

Idea of Linear Cryptanalysis

Linear cryptanalysis attempts to choose (M,C ) pairs such that with high
probability, linear relations exist between portions of the plaintexts M and
ciphertexts C (called “linearly approximations”).

If a cryptosystem is “close to” being linear, then the modified system can
be broken and the original system compromised after some searching.

“close to linear” means modifying a few entries in the system (e.g. in
the S-boxes) makes it linear on certain plaintext/ciphertext pairs.

Since P-boxes are linear, S-boxes must not be linear.

S-boxes must also not be “close” to linear (i.e. closely approximated
by a linear function).

DES was not designed to offer optimal resistance to linear cryptanalysis.
Unclear if NSA or IBM did not know about linear cryptanalysis at the time
or were just not worried about it.
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Attacks on Block Ciphers Analytic Attacks

Requirements for full DES

Type of attack Expected time # of (M,C ) pairs

Exhaustive search 255 none
Linear Cryptanalysis 243 243 (chosen)

Differential Cryptanalysis 247 247 (known)

In DES, 247 (M,C ) pairs require 1 Petabyte (≈ 1, 000 Terrabytes) of
storage.

Note: AES not affected by these attacks (by design).

Modern ciphers must be designed to credibly withstand linear and
differential cryptanalysis!
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Attacks on Block Ciphers Analytic Attacks

Algebraic Attacks

Courtois 2001 — KPA, generates multivariate equations from S-boxes,
where the unknowns are the key bits.

So far no threat to any modern block cipher.

Obstacle: solving multivariate equations seems to be hard in practice.

(In fact so hard that there are cryptosystems whose security is based on
the intractability of this problem!)
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Attacks on Block Ciphers Analytic Attacks

Biclique Attacks

Enhanced meet-in-the-middle attack using bicliques that map internal
states to ciphertexts via subkeys.

First improved key recovery through the biclique attack on AES
(Bogdanov, Khovratovich, Rechberger 2011):

AES key length Average exhaustive search Biclique (expected)

128 2127 2126.1

192 2191 2189.7

256 2255 2254.4

These and other attacks (e.g. square attack) are successful on 8 and
lower round AES.

Biclique attacks have also been successfully mounted on some
lightweight ciphers
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Attacks on Block Ciphers Analytic Attacks

Lightweight Cryptography

Lightweight ciphers are systems targeted to operate in constrained
environments, such as

Sensors

Healthcare devices

Distributed control systems

Internet of Things (IoT) devices

See the NIST lightweight crypto competition at
https://csrc.nist.gov/projects/lightweight-cryptography

Round 1: March 2019 - March 2021 (32 out of 57 submissions)

Round 2: March 2021 - February 2023 (10 submissions)

Ascon family selected for standardization on February 7, 2023

Standardization process currently in progress

Up next: Stream ciphers.
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Stream Ciphers

Stream Ciphers

In contrast to block ciphers, stream ciphers don’t treat incoming plaintext
blocks independently.

Encryption Ci of plaintext block Mi depends on internal state of
device.

After encryption, the device changes state according to some rule.

Result: two occurrences of the same plaintext will usually not result in the
same ciphertext.

Stream ciphers incorporate a key stream into encryption and decryption
that is generated from the key. In practice, this is a pseudo-random
sequence of bits. Blocks of key bits are x-or’ed with plaintext blocks for
encryption, and the same blocks are x-or’ed with ciphertext blocks for
decryption
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Stream Ciphers Synchronous Stream Ciphers)

Synchronous Stream Cipher (SSC)

Idea:

State depends only on the previous state, not on the input Mi .

Output Ci depends only on Mi and i , not on Mi−1, Mi−2, . . .

Implemented by boolean logic that should produce a pseudo-random
sequence Ri synchronized by the key (e.g. a shift register like in
Problem 1 of Assignment 1).

Example 2

The one-time pad can be interpreted as an SSC. The key stream consists
of the key bits.
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Stream Ciphers Synchronous Stream Ciphers)

Diagram of an SSC
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Stream Ciphers Synchronous Stream Ciphers)

Block Ciphers as SSCs

Idea:

Send an initial key value KS0 = IV to the receiver in the clear.

Compute KSi = EK (KSi−1) and Ci = Mi ⊕ KSi .

IV (INITIAL VALUE) BLOCK
CIPHER +

M
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C
i

K

KEY STREAM
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Stream Ciphers Synchronous Stream Ciphers)

Properties of Block-Cipher Based SSCs

Advantages:

Only the encryption function of the block cipher is used (important
for AES where decryption is slightly less efficient than encryption)

The fact that the i-th ciphertext block does not depend on previous
ciphertext or plaintext blocks allows for random-access
encryption/decryption and parallelism

Problems:

1 No error propagation

2 Loss of one character between sender and receiver destroys
synchronization (no “memory” of history)
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Stream Ciphers Self-Synchronizing Stream Cipher)

Self-Synchronizing Stream Cipher (Self-SSC)

AKA asynchronous stream cipher

Idea:

Similar to SSC, except the counter is replaced by a register containing
the previous k ciphertexts.

Self-synchronizing after k steps.

Can also be implemented with a block cipher as above.

Limited error propagation (k steps).
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Stream Ciphers Self-Synchronizing Stream Cipher)

Diagram of a Self-SSC
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Modes of Operation for Block Ciphers

Modes of Operation

Block ciphers can be used in a number of different modes of operation,
depending on the application.

Definition 3 (Electronic code book (ECB) mode)

Blocks are encrypted sequentially, one at a time: Ci = EK (Mi ),
i = 1, 2, . . .

A block cipher used in ECB mode is essentially a substitution cipher (with
all its weaknesses).

(Image courtesy Nitin Saxena,
IIT Kanpur, India)

Microsoft’s Office 365 Message Encryption still used ECB in October 2022:
https://www.theregister.com/2022/10/14/microsoft_office_365_message_encryption/

Changed to AES256-CBC in June 2023, with AES128-ECB legacy option
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Modes of Operation for Block Ciphers

More Modes of Operation

To eliminate the shortcomings of ECB mode, additional modes of
operation have been devised:

Cipher Block Chaining (CBC)

Counter (CTR)

Cipher Feedback (CFB)

Output Feedback (OFB)

The last three modes turn a block cipher into a stream cipher.

DES Certified Modes: ECB, CBC, and CFB; standardized as part of DES
standardization process.

CTR mode arose from concerns with CBC; standardized for AES.
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Modes of Operation for Block Ciphers

Cipher Block Chaining (CBC) Mode

Send initial random block C0 = IV (e.g. a simple plaintext encrypted in
ECB mode, such as C0 = EK (00 · · · 000)

Encryption: Ci = EK ( Mi ⊕ Ci−1︸ ︷︷ ︸
“Pre-whitening”

) i = 1, 2, . . .

Decryption: Mi = DK (Ci )⊕ Ci−1 i = 1, 2, . . .

Note that this is not a stream cipher (X-OR with plaintext happens inside
encryption).
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Modes of Operation for Block Ciphers

Diagram of CBC
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Modes of Operation for Block Ciphers

Features of CBC

1 Varying IV encrypts the same message differently.

2 Repeated plaintexts will be encrypted differently in different
repetitions.

3 Plaintext errors propagate through the rest of encryption (good for
message authentication, as last ciphertext block depends on all
plaintext blocks)

4 Limited error propagation in decryption: error from incorrect
ciphertext modification in propagates only to the next block.

Widely used, but vulnerabilities have been discovered (eg. Vaudenay 2002
padding attack, SSL insertion attack).
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Modes of Operation for Block Ciphers

Stream Cipher Modes

CTR, CFB and OFB all turn a block cipher into a stream cipher by
generating a pseudorandom key stream KSi using the encryption function
as described earlier:

KSi = EK (some string) , Ci = Mi ⊕ KSi .

Argument of EK is

a counter value in CTR mode (synchronous)

previous ciphertext bits in CFB mode (self-synchronizing)

previous key stream bits in OFB mode (synchronous)
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Modes of Operation for Block Ciphers

Counter (CTR) Mode

SSC with key stream KSi = EK (CTRi ) where CTRi is a counter of the
same size as the plaintext block size.

Subsequent values of the counter are computed via an iterating
function — the FIPS recommendation is simply CTRi+1 = CTRi + 1
(mod 2n) assuming an n-bit counter.

Counter must be unique for each plaintext block that is ever encrypted
under a given key, across all messages.

keep count of # of plaintext blocks encrypted under a given counter
sequence

use a new block cipher key before exceeding 2n blocks (n-bit blocks)
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Modes of Operation for Block Ciphers

Feedback Modes

The feedback modes also turn a block cipher into a stream cipher:

CFB (cipher feedback) mode:

self-SSC.

Simplest form, one register: KSi = EK (Ci−1) (with C0 = IV ).

In general, r cipher bits are fed back (for DES, r = 8 and IV is at
least 48 random bits, right-justified, padded with 0’s).

OFB (output feedback) mode:

SSC as described earlier

Simplest form, one register: KSi = EK (KSi−1) (with KS0 = IV )

In general, r keystream bits are fed back

For both feedback modes, each cryptographic session requires a different
IV, but as always, these may be sent in the clear.
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Modes of Operation for Block Ciphers

Further Information

More information can be found at NIST’s cryptographic standards and
guidelines website:

For block ciphers, see
https://csrc.nist.gov/projects/block-cipher-techniques

For more modes of operation, see
https://csrc.nist.gov/projects/block-cipher-techniques/BCM

Relevant publications: NIST SP 800-38A - 800-38G.

Next: working toward cryptographic key agreement via one-way functions.
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One-Way Functions

One-Way Functions

Definition 4 (One-way function)

A function f that satisfies the following two properties:

1 Ease of Computation: f (x) is efficient to evaluate for a given x .

2 One-Way Property: Given y = f (x), it is computationally intractable
to find x .

It is not known whether true one way functions exist, but several that are
believed to be one-way are used in cryptography. Instead of the one-way
property, “practical” one-way functions satisfy the following weaker
property:

Definition 5 (Pre-image resistance)

2’ Pre-image Resistance: Given y = f (x), it is computationally infeasible
to find x .
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One-Way Functions

Example — Cryptosystem

Example 6

A secure cryptosystem provides a one-way function as follows. Define

f : K → C via f (x) = Ex(M) ,

where M is a fixed known plaintext and x is a key.

Given M and C (KPA), it should computationally infeasible to find the
key x .
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One-Way Functions

Example — Modular Exponentiation

Example 7

If p is a large prime (≈ 21024) and g a suitably chosen integer (more
later), then the function

f (x) = g x (mod p)

seems to be a one-way function, provided p − 1 has at least one large
prime factor.

x is the discrete logarithm (modulo p) of f (x) with respect to g .

Computing x given f (x) and g is known as the discrete logarithm
problem (DLP).

This function forms the basis of many cryptographic protocols.
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One-Way Functions

Example — Polynomials

Example 8

Consider

f (x) = a0x
n0 + a1x

n1 + a2x
n2 + · · ·+ ak (mod p), a0 ̸≡ 0 (mod p)

where p is a large prime, n0 > n1 > n2 . . . , n0 is large and k is small (so
this is a sparse polynomial of large degree). In 1977 the following one-way
function was suggested:

f (x) = a0x
224−3 + a1x

224−17 + a2x
2 + a3x + a4 (mod p)

where p, ai ≈ 260 ≈ 1019.

Today we would require a much larger value of p.
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One-Way Functions

Application: Access Control

Secure login via one-way functions: Computer stores a table(
user-idi , f (Pi )

)
,

containing user id’s and images of passwords under a one-way function f .

Safer than storing passwords in the clear.

When a user logs in, she submits her user-id and her password P.

The computer generates f (P) and checks if
(
user-id, f (P)

)
is an entry in

the password table.

If yes, access is granted; if no, access is denied.

Anyone gaining access to the table is unable to obtain P from f (P).
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Toward Cryptographic Key Agreement – Number Theory

Recall Conventional Cryptosystems

secret 
message

secret 
message

cipher 
text

insecure

channel

secure channel

...treasure 
beneath the 

old oak tree at...

encrypt

SENDER RECEIVEREAVESDROPPER

decrypt
...xxxaeq 

tinslsew cpt 
cie qpx rjbo yt...

...treasure 
beneath the 

old oak tree at...

cipher 
text

...xxxaeq 
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cie qpx rjbo yt...
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Toward Cryptographic Key Agreement – Number Theory

Key Agreement Problem

Recall the key agreement problem:

Before deploying a conventional cryptosystem, how do Alice and Bob
agree on a common secret cryptographic key?

Solutions:

Secure channel (slow and expensive);

Key agreement protocol via a certain one-way function — next;

Public key cryptography (also used for authentication) — later.

The widely used Diffie-Hellman key exchange protocol (1976) uses
concepts from a mathematical area called number theory that is crucial to
cryptography (and also happens to be your instructor’s research field).
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Toward Cryptographic Key Agreement – Number Theory Primitive Roots and Discrete Logarithms

Primitive Roots

For any prime p :

Zp = {0, 1, 2, . . . , p − 1} is the set of integers modulo p;

Z∗
p := Zp \ {0} = {1, 2, . . . , p − 1}.

Theorem 1 (Fermat)

If a is an integer and p is a prime with p ∤ a, then ap−1 ≡ 1 (mod p).

What about smaller powers of a, i.e. a0, a1, a2, . . . ap−2 (mod p)?

Definition 9 (Primitive Root)

For a prime p, a primitive root of p is an integer g ∈ Z∗
p such that the

smallest positive exponent k with gk ≡ 1 (mod p) is p − 1.

Mathematically, g is a generator of the multiplicative group Z∗
p.
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Toward Cryptographic Key Agreement – Number Theory Primitive Roots and Discrete Logarithms

Example

Primitive roots yield the longest possible cycle of powers modulo p.

Example 10

Is a = 3 a primitive root of p = 7?

By tabulating the powers of a mod p we get

30 ≡ 1, 31 ≡ 3, 32 ≡ 2, 33 ≡ 6, 34 ≡ 4, 35 ≡ 5, 36 ≡ 1 (mod 7) .

(Sequence repeats at exponent 6 by Fermat’s theorem.)

Since 6 is the smallest power of 3 yielding 1, 3 is a primitive root of 7.

5 is also a primitive root of 7 (check that!)

There are no others (e.g. 23 = 1, so 2 is not a primitive root of 7).
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Toward Cryptographic Key Agreement – Number Theory Primitive Roots and Discrete Logarithms

Finding Primitive Roots

Suppose p is prime. To obtain a primitive root of p:
1 Select some g ∈ Z∗

p
2 Run the primitive root test on g . If it fails, go back to step 1.

Primitive Root Test

g is a primitive root of p iff

g (p−1)/q ̸≡ 1 (mod p)

for every prime factor q of p − 1

This test requires knowledge of the prime factorization of p − 1.

Most primes p have at least one small primitive root, i.e. most of the time,
one of 2, 3, 5 or 7 is a primitive root of p.

So the best choices for g are small primes (try 2, 3, 5, 7, . . . ).
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Toward Cryptographic Key Agreement – Number Theory Primitive Roots and Discrete Logarithms

Example

Example 11

Is g = 2 a primitive root of p = 19?

p − 1 = 18 = 2× 32.

2(19−1)/2 = 29 ≡ 18 ̸≡ 1 (mod 19)

2(19−1)/3 = 26 ≡ 7 ̸≡ 1 (mod 19) .

Thus, 2 is a primitive root of 19.

Only two modular exponentiations rather than the 16 required to compute
g2, g3, . . . , g17 (mod 19).
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Toward Cryptographic Key Agreement – Number Theory Primitive Roots and Discrete Logarithms

Properties of Primitive Roots

Every element of Z∗
p is a unique power of a primitive root of p with

exponent between 0 and p − 2:

Z∗
p = {g0, g1, . . . , gp−2 (mod p)} .

Example 12

Recall the previous example:

30 ≡ 1, 31 ≡ 3, 32 ≡ 2, 33 ≡ 6, 34 ≡ 4, 35 ≡ 5, 36 ≡ 1 (mod 7) .

Z∗
7 = {1, 2, 3, 4, 5, 6} = {30, 32, 31, 34, 35, 33} ,

where all the powers of 3 are taken modulo 7.
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Toward Cryptographic Key Agreement – Number Theory Primitive Roots and Discrete Logarithms

Discrete Logarithms

Let p be a prime and g a primitive root of p. Then for every y ∈ Z∗
p, there

exists a unique integer x with 0 ≤ x ≤ p − 2 such that

y ≡ g x (mod p)

Definition 13 (Discrete Logarithm)

The integer x is the discrete logarithm (or index) of y (with respect to g
modulo p).

Recall that the function f (x) = g x (mod p) is (believed to be) a one-way
function. This means that the discrete logarithm problem (DLP) —
extracting discrete logs — is computationally hard since it is equivalent to
computing a pre-image of a one-way function.
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Diffie-Hellman Protocol

Diffie-Hellman Key Exchange: Idea

Alice and Bob wish to establish a common key for encryption over a public
channel in such a way that an eavesdropper cannot determine the key.

ALICE

ALICE

1

BOB

BOB

2
2

2

1

1

EAVESDROPPER

THE SECRET KEY IS: Two locks locked together. 
Eavesdropper gets two locked locks & cannot open them.

2

1

2

1

2

1

insecure

channel
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Diffie-Hellman Protocol

Diffie-Hellman Key Exchange Protocol

Diffie and Hellman (1976) — still used today.

Alice and Bob agree on

a large prime p,

a primitive root g of p (1 < g < p).

These quantities can be public.
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Diffie-Hellman Protocol

Diffie-Hellman Description

Alice Public channel Bob

Selects random a Selects random b
(1 < a < p − 1) (1 < b < p − 1)

ya ≡ ga (mod p)
ya−→ ya

yb
yb←− yb ≡ gb (mod p)

K ≡ yb
a (mod p) K ≡ ya

b (mod p)

Note

A and B get the same number K because

yb
a ≡ (gb)a ≡ gba ≡ (ga)b ≡ ya

b (mod p)

In practice, one could use the low order 128 bits of H(K ) for an AES key,
where H is a cryptographically secure hash function (more later).
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Diffie-Hellman Protocol

Diffie-Hellman — Toy Example

Alice and Bob publicly agree on p = 23 and g = 5.

Alice Public channel Bob

Selects a = 17 Selects b = 12

ya ≡ 517 ≡ 15 (mod 23)
15−→ 15

18
18←− yb ≡ 512 ≡ 18 (mod 23)

K ≡ 1817 ≡ 8 (mod 23) K ≡ 1512 ≡ 8 (mod 23)

The shared number is K = 8.
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Diffie-Hellman Protocol

Diffie-Hellman — Questions

How secure is this?

How difficult is for an eavesdropper it to find K?

In general, how should p and g be chosen to maximize security?

How efficient is this?

How easy is it to find suitable values for p and g?

How long does it take to compute ya ≡ ga (mod p) from g and a
(also yb and K )?

To answer these questions, we need more number theory!
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