CPSC 418/MATH 318 Introduction to Cryptography

More Number Theory, Security and Efficiency of Diffie-Hellman

Renate Scheidler

Department of Mathematics \& Statistics

Department of Computer Science
University of Calgary
Week 6

Outline

(1) More Number Theory

- Euler's ϕ FunctionDiffie-Hellman Protocol
- Diffie-Hellman Protocol - Recap
(3) Security of Diffie-Hellman
- Discrete Log Attack
- Parameter Choices
- M. . .-in-the-Middle AttackEfficiency of Diffie-Hellman
- Prime Generation and Testing
- Binary Exponentiation

Where are we at?

Recap: Primitive Roots

Integers Modulo Composite Numbers

Let p be a prime

- Fermat's Little Theorem: $a^{p-1} \equiv 1(\bmod p)$ for every integer a with $p \nmid a$.
- Def'n of primitive root: an integer $g \in \mathbb{Z}$ such that the smallest positive exponent k with $g^{k} \equiv 1(\bmod p)$ is $p-1$.
- Equivalent characterization of primitive roots: Every element of \mathbb{Z}_{p}^{*} is a unique power of a primitive root of p :

$$
\mathbb{Z}_{p}^{*}=\{1,2, \ldots p-1\}=\left\{g^{0}, g^{1}, \ldots, g^{p-2} \quad(\bmod p)\right\} .
$$

- Primitive Root Test: g is a primitive root of p iff $g^{(p-1) / q} \not \equiv 1$ $(\bmod p)$ for every prime factor q of $p-1$.

Question: how many primitive roots are there for a prime p?

Euler's ϕ Function

How many primitive roots are there for a given prime p ? That number is determined by the Euler phi function of $p-1$.

Definition 2 (Euler's ϕ Function)

Let m be a positive integer. Euler's phi function is defined via $\phi(m)=\left|\mathbb{Z}_{m}^{*}\right|$, the cardinality of \mathbb{Z}_{m}^{*}.

Interpretation: $\phi(m)$ is the number of integers between 1 and $m-1$ which are coprime to m.

Example 3

$\phi(28)=\left|\mathbb{Z}_{28}^{*}\right|=|\{1,3,5,9,11,13,15,17,19,23,25,27\}|=12$

More Number Theory Euler's ϕ Function
Computing ϕ in General

Corollary 2

If the prime factorization of m is given by

$$
m=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}, \quad p_{i} \text { prime }
$$

then

$$
\begin{aligned}
\phi(m) & =\phi\left(p_{1}^{e_{1}}\right) \phi\left(p_{2}^{e_{2}}\right) \cdots \phi\left(p_{k}^{e_{k}}\right) \\
& =p_{1}^{e_{1}-1}\left(p_{1}-1\right) p_{2}^{e_{2}-1}\left(p_{2}-1\right) \cdots p_{k}^{e_{k}-1}\left(p_{k}-1\right)
\end{aligned}
$$

Example 4

$\phi(28)=\phi\left(2^{2} \times 7\right)=\phi\left(2^{2}\right) \phi(7)=2^{2-1}(2-1) \times(7-1)=12$.

ϕ on Prime Powers

Let p be a prime. Then

$$
\begin{aligned}
& \phi(p)=p-1=p^{0}(p-1) \\
& \phi\left(p^{2}\right)=p^{2}-p=p^{1}(p-1) \\
& \vdots \\
& \phi\left(p^{n}\right)=p^{n}-p^{n-1}=p^{n-1}(p-1) .
\end{aligned}
$$

What about composites with more than one prime factor?

Theorem 1

If $\operatorname{gcd}\left(m_{1}, m_{2}\right)=1$, then $\phi\left(m_{1} m_{2}\right)=\phi\left(m_{1}\right) \phi\left(m_{2}\right)$.
In other words, Euler's phi function is multiplicative.

Euler's Theorem

Recall Fermat's Little Theorem:

Theorem 3 (Fermat)

If a is an integer and p is a prime with $p \nmid a$, then $a^{p-1} \equiv 1(\bmod p)$.

The generalization to composite numbers is Euler's Theorem:

Theorem 4 (Euler)

If a and m are integers with $m>0$ and $\operatorname{gcd}(a, m)=1$, then $a^{\phi(m)} \equiv 1$ $(\bmod m)$.

Fermat's Little Theorem is the special case of Euler's Theorem with $m=p$ prime.

More Number Theory Euler's ϕ Function
 Sizes of $\phi(m)$ Versus m

For any prime p, we have $\phi(p)=p-1 \lesssim p$ (for p large).
Theorem 5
For any prime p, there are exactly $\phi(p-1)$ primitive roots of p.

Example 5

The number of primitive roots for $p=7$ is

$$
\phi(p-1)=\phi(6)=\phi(3 \cdot 2)=\phi(3) \phi(2)=(3-1)(2-1)=2 .
$$

We saw earlier that they are 3 and 5 .

Example 6

For $p \approx 2^{1024}$, we have $\phi(p-1) \approx(p-1) / 14$. So roughly one in 14 elements in \mathbb{Z}_{p}^{*} (about 7%) is a primitive root. We expect to find one after 14 random guesses.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318

Public:

- Large prime p,
- Primitive root g of $p(1<g<p)$.

Alice	Public channel	Bob
Selects random a $(1<a<p-1)$		Selects random b $(1<b<p-1)$
$y_{a} \equiv g^{a}(\bmod p)$	$\xrightarrow{y_{a}}$	y_{a}
y_{b}	$\stackrel{y_{b}}{\square}$	$y_{b} \equiv g^{b}(\bmod p)$
$K \equiv y_{b}{ }^{a}(\bmod p)$		$K \equiv y_{a}{ }^{b}(\bmod p)$

How secure is this?

- How difficult is for an eavesdropper it to find K ?
- In general, how should p and g be chosen to maximize security?

How efficient is this?

- How easy is it to find suitable values for p and g ?
- How long does it take to compute $y_{a} \equiv g^{a}(\bmod p)$ from g and a (also y_{b} and K)?

Shared key: $K \equiv y_{b}{ }^{a} \equiv y_{a}{ }^{b} \equiv g^{b a}(\bmod p)$.

Security of Diffie-Hellman

Adversary's objective: find K.

Diffie-Hellman Problem (DHP):

Given $p, g, g^{a}(\bmod p), g^{b}(\bmod p)$, find $g^{a b}(\bmod p)$.

- equivalent to finding K.

Recall the Discrete Logarithm Problem (DLP):

Given $p, g, g^{x}(\bmod p)$, find x.

- If an adversary can solve an instance of the DLP, she can solve the DHP.
- It is unknown if there are ways of solving the DHP, and hence breaking DH key agreement, other than extracting discrete logs.

Diffie-Hellman - Best Choice for p

The best choice for p is a safe prime, i.e. a prime of the form

$$
p=2 q+1 \text { with } q \text { prime. }
$$

Such a q is called a Sophie Germain prime.

- $p-1=2 q$ has a prime factor that is as large as possible, thus foiling Pohlig-Hellman attacks.
- Lots of primitive roots of p : for $q \neq 2$ (so $p \geq 7$), we have

$$
\phi(p-1)=\phi(2) \phi(q)=1 \cdot(q-1)=\frac{p-3}{2} \approx \frac{p}{2} .
$$

In fact, for any primitive root g of p, the $(p-3) / 2$ primitive roots of p are precisely the odd powers of g except g^{q}.

- Optimizes primitve root choices and test.
p is found by first finding a prime q (1023 bits) and then checking that $p=2 q+1$ is prime.

Man-in-the-Middle Attack Against Diffie-Hellman

Consequence of MITM attack

AKA "monster-in-the-middle", "machine-in-the-middle" or "monkey-in-the-middle" attack for gender neutrality. We can also use "Mallory-in-the-middle".

This is an active attack (omit all "mod p " s to avoid clutter).

- Mallory intercepts g^{a} from Alice and g^{b} from Bob.
- She selects e and sends g^{e} to both Alice and Bob. Alice now thinks that g^{e} is g^{b}, and Bob thinks g^{e} is g^{a}.
- Alice computes what she thinks is $\left(g^{b}\right)^{a}$, but in fact computes $\left(g^{e}\right)^{a}$.
- Bob computes what he thinks is $\left(g^{a}\right)^{b}$, but in fact computes $\left(g^{e}\right)^{b}$.
- Mallory computes $\left(g^{a}\right)^{e}$ (which is what Alice thinks is the key) and $\left(g^{b}\right)^{e}$ (which is what Bob thinks is the key).

Security of Diffie-Hellman M. . .-in-the-Middle Attack

Summary of MITM Attack

Schematic of MITM (all "mod p"s again omitted).

Alice	Mallory	Bob	
a		e	
g^{a}	\longrightarrow	$g^{a} \|$$g^{e}$ \longrightarrow	g^{e} - thinks this is g^{a}
g^{e} - thinks this is g^{b}	\longleftarrow	$g^{e} \|$$g^{b}$ \longleftarrow	g^{b}
$\left(g^{e}\right)^{a}-$ thinks this is $\left(g^{b}\right)^{a}$		$\left(g^{a}\right)^{e},\left(g^{b}\right)^{e}$	
		$\left(g^{e}\right)^{b}-$ thinks this is $\left(g^{a}\right)^{b}$	

$$
\begin{array}{rlll}
\text { Encrypts } M \text { with } g^{e a} & \longrightarrow & \begin{array}{l}
\text { Decrypts } M \text { with } g^{e a} \\
\\
\\
\\
\\
\\
\\
\\
\text { De-enrypts } M \text { with } g^{e b}
\end{array} \longrightarrow \text { Decrypts } M \text { with } g^{e b} \\
g^{e b} & \longleftarrow \text { Encrypts } M^{\prime} \text { with } g^{e b}
\end{array}
$$

Mallory now shares the key $g^{e a}$ with Alice and the key $g^{e b}$ with Bob.
If Alice sends a message encrypted with $g^{e a}$ to Bob:

- Mallory intercepts it, decrypts it with $g^{e a}$, re-encrypts it with $g^{e b}$ and sends it on to Bob.
- Bob decrypts it unsuspectingly and in his perspective correctly uses the key $g^{a b}(\bmod p)$.

Similarly, Mallory can read all traffic from Bob to Alice.
Even worse - she can modify it!

Protection Against MITM

Solution: keys need to be entity-authenticated (i.e. verified as belonging to the correct person).

- This is done using digital signatures, which we'll discuss later.

MITM attack is an example of protocol failure that can happen when adversarial models are too weak

- Basic (un-authenticated, or anonymous) DH is provably secure against passive adversaries (can only eavedrop)
- Easily defeated by active adversary

Beware of cryptography textbooks that only focus on the mathematics and ignore these issues!

Generating Primes

Recall

Fermat's Little Theorem

If p is a prime and a is an integer with $p \nmid a$, then $a^{p-1} \equiv 1(\bmod p)$.

Given N (which may or may not be prime), let $a \in \mathbb{Z}_{N}$.

- If $a^{N-1} \not \equiv 1(\bmod N)$, then N is composite (by Fermat).
- If $a^{N-1} \equiv 1(\bmod N)$, then N could be prime, or it could be composite in which case it is referred to as a "base a pseudoprime".

Example 7

$N=15: 13^{N-1} \equiv 13^{14} \equiv 4(\bmod 15)$, so 15 is not a prime.
$11^{14} \equiv 1(\bmod 15)$, so 15 is a base 11 pseudoprime.

Is this Fool-Proof?

Unfortunately, there are composite numbers (called Carmichael numbers) for which $a^{N-1} \equiv 1(\bmod N)$ for ALL $a \in \mathbb{Z}_{N}^{*}$.

- Thus, the Fermat test always lies for Carmichael numbers N.

The smallest Carmichael number is $561=3 \cdot 11 \cdot 17$. The next few are $1105,1729,2465,2821,6601,8911$. These are all the Carmichael numbers up to 10,000 .

- Even worse: it has been proved that there are infinitely many Carmichael numbers (Alford-Granville-Pomerance 1994).
- The good news is that they are very rare, so this test will give work well for most integers (and works very well in practice).

The Fermat Primality Test

Input: N

Output: "prime" or "composite".
(1) Generate random $a \in \mathbb{Z}_{N}$.
(2) If $\operatorname{gcd}(a, N)>1$, output "composite" and stop.

- If $a^{N-1} \not \equiv 1(\bmod N)$, output "composite", else output "prime"

The "else" clause in step 3 may produce a lie. Provably, this test lies with expected probability $\leq 1 / 2$, but in practice, it rarely lies.

To obtain a large prime:
(1) Generate a random number N of the desired size
(2) trial-divide N by all small primes (say up to a trillion)
(If N passes step 2 (i.e. has no small prime factors), run the Fermat test on N for a few small prime bases a. If N passes, declare N prime.

Efficiency of Diffie-Hellman Binary Exponentiation
 Efficient Modular Exponentiation

Recall that Diffie Hellman requires computation of $g^{a}, g^{b},\left(g^{a}\right)^{b},\left(g^{b}\right)^{a}$ $(\bmod p)$. How efficient is DH key agreement?

- In other words, how fast is it to evaluate modular powers?
- Fast modular exponentiation is also needed in the Fermat primality test, the primitive root test, and RSA (later).

Goal: Efficiently evaluate $a^{n}(\bmod m)$ given a, n, m.
One example: binary exponentiation

- based on the binary expansion of n :

$$
n=b_{0} 2^{k}+b_{1} 2^{k-1}+\cdots+b_{k-1} 2+b_{k}
$$

where $b_{0}=1, b_{i} \in\{0,1\}$ for $1 \leq i \leq k$ with $k=\left\lfloor\log _{2} n\right\rfloor$.

Binary Exponentiation: Idea

Binary Exponentiation: Description

Given b_{0}, \ldots, b_{k}, we can evaluate n efficiently using Horner's Method:

$$
n=2\left(\ldots\left(2\left(2 b_{0}+b_{1}\right)+b_{2}\right) \cdots+b_{k-1}\right)+b_{k} .
$$

Define $s_{0}=b_{0}, s_{i+1}=2 s_{i}+b_{i+1}$ for $0 \leq i \leq k-1$. Then

$$
\begin{aligned}
& s_{0}=b_{0} \\
& s_{1}=2 s_{0}+b_{1}=2 b_{0}+b_{1} \\
& s_{2}=2 s_{1}+b_{2}=2\left(2 b_{0}+b_{1}\right)+b_{2}=2^{2} b_{0}+2 b_{1}+b_{2}
\end{aligned}
$$

$$
s_{k}=n .
$$

Using induction on i, one can formally prove:

$$
s_{i}=\sum_{j=0}^{i} b_{j} 2^{i-j} \quad \text { for } 0 \leq i \leq k
$$

Binary Exponentiation: Algorithm

The actual algorithm:
(1) Initialize $r_{0}=a$.
(2) for $0 \leq i \leq k-1$ compute

$$
r_{i+1}=\left\{\begin{array}{lll}
r_{i}^{2} & (\bmod m) & \text { if } b_{i+1}=0, \\
r_{i}^{2} a & (\bmod m) & \text { if } b_{i+1}=1
\end{array}\right.
$$

AKA "Square \& Multiply".

For $0 \leq i \leq k$, define

$$
r_{i} \equiv a^{s_{i}} \quad(\bmod m)
$$

Then $r_{k} \equiv a^{s_{k}} \equiv a^{n}(\bmod m)$ and we can compute r_{k} iteratively as follows:

$$
\begin{aligned}
r_{0} & \equiv a^{s_{0}} \equiv a \quad(\bmod m) \\
r_{1} & \equiv a^{s_{1}} \equiv a^{2 s_{0}+b_{1}} \equiv\left(a^{s_{0}}\right)^{2} a^{b_{1}} \equiv\left(r_{0}\right)^{2} a^{b_{1}} \quad(\bmod m) \\
\quad & \\
r_{i+1} & \equiv a^{s_{i+1}} \equiv a^{2 s_{i}+b_{i+1}} \equiv\left(a^{s_{i}}\right)^{2} a^{b_{i+1}} \equiv\left(r_{i}\right)^{2} a^{b_{i+1}} \quad(\bmod m) .
\end{aligned}
$$

Compute $2^{13}(\bmod 22)$.
$13=8+4+1=2^{3}+2^{2}+0 \cdot 2^{1}+2^{0}=(1101)_{2}$, so

- $k=3$ (one less than the number of bits in 13) and
- $b_{0}=1, b_{1}=1, b_{2}=0, b_{3}=1$.

Initialization: $\quad r_{0}=2$
Since $b_{1}=1: \quad r_{1} \equiv r_{0}^{2} a \equiv 2^{2} \cdot 2 \equiv 8 \quad(\bmod 22)$
Since $b_{2}=0: \quad r_{2} \equiv r_{1}^{2} \equiv 8^{2} \equiv 20 \quad(\bmod 22)$ Since $b_{3}=1: \quad r_{3} \equiv r_{2}^{2} a \equiv 20^{2} \cdot 2 \equiv(-2)^{2} \cdot 2 \equiv 8 \quad(\bmod 22)$

Answer: $\quad 2^{13} \equiv 8(\bmod 22)$.

Binary Exponentiation: Analysis

What is the computational cost of this? Recall

$$
r_{i+1}=\left\{\begin{array}{ll}
r_{i}^{2} \quad(\bmod m) & \text { if } b_{i+1}=0, \\
r_{i}^{2} a(\bmod m) & \text { if } b_{i+1}=1,
\end{array} \quad(0 \leq i \leq k-1) .\right.
$$

- k modular squarings
- $h(n)-1$ modular multiplications by a, where $h(n)$ is the Hamming weight of n, i.e. the number of ' 1 's in the binary expansion of n.

Total cost: at most $2\left\lfloor\log _{2}(n)\right\rfloor$ modular multiplications.
Also note that all intermediate operands are smaller than m^{2}

- Important that r_{i} is reduced modulo m after every operation

