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More Number Theory

Recap: Primitive Roots

Let p be a prime

Fermat’s Little Theorem: ap−1 ≡ 1 (mod p) for every integer a
with p - a.

Def’n of primitive root: an integer g ∈ Z such that the smallest
positive exponent k with gk ≡ 1 (mod p) is p − 1.

Equivalent characterization of primitive roots: Every element of
Z∗p is a unique power of a primitive root of p:

Z∗p = {1, 2, . . . p − 1} = {g0, g1, . . . , gp−2 (mod p)} .

Primitive Root Test: g is a primitive root of p iff g (p−1)/q 6≡ 1
(mod p) for every prime factor q of p − 1.

Question: how many primitive roots are there for a prime p?
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More Number Theory Euler’s φ Function

Integers Modulo Composite Numbers

Define for m ∈ N (set of positive integers):

Zm = {0, 1, . . . ,m − 1} set of integers modulo m

Z∗m = {a ∈ Zm | gcd(a,m) = 1} set of integers between 1 and m
that are coprime to m (no common divisors with m).

These are generalizations of Zp and Z ∗p for to arbitrary integers.

Example 1

Z28 = {0, 1, . . . , 27} and Z∗28 = {1, 3, 5, 9, 11, 13, 15, 17, 19, 23, 25, 27}.
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More Number Theory Euler’s φ Function

Euler’s φ Function

How many primitive roots are there for a given prime p? That number is
determined by the Euler phi function of p − 1.

Definition 2 (Euler’s φ Function)

Let m be a positive integer. Euler’s phi function is defined via
φ(m) = |Z∗m|, the cardinality of Z∗m.

Interpretation: φ(m) is the number of integers between 1 and m− 1 which
are coprime to m.

Example 3

φ(28) = |Z∗28| = |{1, 3, 5, 9, 11, 13, 15, 17, 19, 23, 25, 27}| = 12
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More Number Theory Euler’s φ Function

φ on Prime Powers

Let p be a prime. Then

φ(p) = p − 1 = p0(p − 1)

φ(p2) = p2 − p = p1(p − 1)

...

φ(pn) = pn − pn−1 = pn−1(p − 1) .

What about composites with more than one prime factor?

Theorem 1

If gcd(m1,m2) = 1, then φ(m1m2) = φ(m1)φ(m2).

In other words, Euler’s phi function is multiplicative.
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More Number Theory Euler’s φ Function

Computing φ in General

Corollary 2

If the prime factorization of m is given by

m = pe1
1 pe2

2 · · · p
ek
k , pi prime,

then

φ(m) = φ(pe1
1 )φ(pe2

2 ) · · ·φ(pekk )

= pe1−1
1 (p1 − 1)pe2−1

2 (p2 − 1) · · · pek−1
k (pk − 1) .

Example 4

φ(28) = φ(22 × 7) = φ(22)φ(7) = 22−1(2− 1)× (7− 1) = 12.
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More Number Theory Euler’s φ Function

Euler’s Theorem

Recall Fermat’s Little Theorem:

Theorem 3 (Fermat)

If a is an integer and p is a prime with p - a, then ap−1 ≡ 1 (mod p).

The generalization to composite numbers is Euler’s Theorem:

Theorem 4 (Euler)

If a and m are integers with m > 0 and gcd(a,m) = 1, then aφ(m) ≡ 1
(mod m).

Fermat’s Little Theorem is the special case of Euler’s Theorem with m = p
prime.
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More Number Theory Euler’s φ Function

Sizes of φ(m) Versus m

For any prime p, we have φ(p) = p − 1 / p (for p large).

How does φ(m) compare to m in general? For m ≥ 2, we have

φ(m) ≥ m

eγ log log(m) + 2.5
log log(m)

(Rosser and Schoenfeld 1962)

where γ = lim
n→∞

(
n∑

k=1

1

k
− log(n)

)
≈ 0.577 (Euler-Mascheroni constant).

So φ(m) grows only marginally slower than m/eγ ≈ 0.573m.
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More Number Theory Euler’s φ Function

Euler’s Theorem and Primitive Roots

Theorem 5

For any prime p, there are exactly φ(p − 1) primitive roots of p.

Example 5

The number of primitive roots for p = 7 is

φ(p − 1) = φ(6) = φ(3 · 2) = φ(3)φ(2) = (3− 1)(2− 1) = 2 .

We saw earlier that they are 3 and 5.

Example 6

For p ≈ 21024, we have φ(p − 1) ≈ (p − 1)/14. So roughly one in 14
elements in Z∗p (about 7%) is a primitive root. We expect to find one after
14 random guesses.
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Diffie-Hellman Protocol Diffie-Hellman Protocol – Recap

Diffie-Hellman Description – Recap

Public:

Large prime p,

Primitive root g of p (1 < g < p).

Alice Public channel Bob

Selects random a Selects random b
(1 < a < p − 1) (1 < b < p − 1)

ya ≡ ga (mod p)
ya−→ ya

yb
yb←− yb ≡ gb (mod p)

K ≡ yb
a (mod p) K ≡ ya

b (mod p)

Shared key: K ≡ yb
a ≡ ya

b ≡ gba (mod p).
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Diffie-Hellman Protocol Diffie-Hellman Protocol – Recap

Diffie-Hellman — Questions

How secure is this?

How difficult is for an eavesdropper it to find K?

In general, how should p and g be chosen to maximize security?

How efficient is this?

How easy is it to find suitable values for p and g?

How long does it take to compute ya ≡ ga (mod p) from g and a
(also yb and K )?
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Security of Diffie-Hellman Discrete Log Attack

Security of Diffie-Hellman

Adversary’s objective: find K .

Diffie-Hellman Problem (DHP):

Given p, g , ga (mod p), gb (mod p), find gab (mod p).

equivalent to finding K .

Recall the Discrete Logarithm Problem (DLP):

Given p, g , g x (mod p), find x .

If an adversary can solve an instance of the DLP, she can solve the
DHP.

It is unknown if there are ways of solving the DHP, and hence
breaking DH key agreement, other than extracting discrete logs.
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Security of Diffie-Hellman Discrete Log Attack

DLP Algorithms and Record

The fastest known algorithm for extracting discrete logs is the Number
Field Sieve which is a very complicated algorithm using extremely
sophisticated number theory.

Note 1

The current NFS DL record is for the prime p = RSA-240 + 49204
(798 bits, 240 decimal digits), held by Boudot-Gaudry-Guillevic-Heninger-
Thomé-Zimmerman (December 2019):

log5(774356626343973985966622216006087686926705588649958206166317147722421706101723470351970238538755049093424997)

= 92603135928144195363094955331732855502961099191437611616729420475898744562365366788100548099072093487548258752802923326
447367244150096121629264809207598195062213366889859186681126928982506005127728321426751244111412371767375547225045851716

Another algorithm for extracting discrete logs, due to Pohlig and Hellman,
is very efficient if p− 1 is smooth. i.e. has only small prime factors. Its run
time is governed by the largest prime factor of p − 1.
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Security of Diffie-Hellman Parameter Choices

Diffie-Hellman – Best Choice for p

The best choice for p is a safe prime, i.e. a prime of the form

p = 2q + 1 with q prime .

Such a q is called a Sophie Germain prime.

p − 1 = 2q has a prime factor that is as large as possible, thus foiling
Pohlig-Hellman attacks.

Lots of primitive roots of p: for q 6= 2 (so p ≥ 7), we have

φ(p − 1) = φ(2)φ(q) = 1 · (q − 1) =
p − 3

2
≈ p

2
.

In fact, for any primitive root g of p, the (p − 3)/2 primitive roots
of p are precisely the odd powers of g except gq.

Optimizes primitve root choices and test.

p is found by first finding a prime q (1023 bits) and then checking that
p = 2q + 1 is prime.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 6 14 / 29

Security of Diffie-Hellman Parameter Choices

Diffie-Hellman – Best Choice for g

Best choice for g : any primitive root of p (in practice ideally a small one)

Maximizes the number of possible values K (every element in Z∗p is a
possible key).

Assuming p = 2q + 1 is a safe prime (i.e. q a Sophie-Germain prime):

g is easily found via random choices because almost half of all
integers modulo p are primitive roots of p.

Either 2 or q is a primitive root of p (but never both).

Primitive root test is cheap: need only choose 1 < g < p− 1 and
gq 6≡ 1 (mod p) as g2 ≡ 1 (mod p) iff g ≡ ±1 (mod p).

(See the MATH 318 Problems on Assignment 2.)
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Security of Diffie-Hellman M. . . -in-the-Middle Attack

Man-in-the-Middle Attack Against Diffie-Hellman

AKA “monster-in-the-middle”, “machine-in-the-middle” or
“monkey-in-the-middle” attack for gender neutrality. We can also use
“Mallory-in-the-middle”.

This is an active attack (omit all “mod p”s to avoid clutter).

Mallory intercepts ga from Alice and gb from Bob.

She selects e and sends g e to both Alice and Bob.
Alice now thinks that g e is gb, and Bob thinks g e is ga.

Alice computes what she thinks is (gb)a, but in fact computes (g e)a.

Bob computes what he thinks is (ga)b, but in fact computes (g e)b.

Mallory computes (ga)e (which is what Alice thinks is the key) and
(gb)e (which is what Bob thinks is the key).
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Security of Diffie-Hellman M. . . -in-the-Middle Attack

Consequence of MITM attack

Mallory now shares the key g ea with Alice and the key g eb with Bob.

If Alice sends a message encrypted with g ea to Bob:

Mallory intercepts it, decrypts it with g ea, re-encrypts it with g eb and
sends it on to Bob.

Bob decrypts it unsuspectingly and in his perspective correctly uses
the key gab (mod p).

Similarly, Mallory can read all traffic from Bob to Alice.

Even worse - she can modify it!
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Security of Diffie-Hellman M. . . -in-the-Middle Attack

Summary of MITM Attack

Schematic of MITM (all “mod p”s again omitted).

Alice Mallory Bob

a e b

ga −→ ga
∣∣ g e −→ g e – thinks this is ga

g e – thinks this is gb ←− g e
∣∣ gb ←− gb

(g e)a – thinks this is (gb)a (ga)e , (gb)e (g e)b – thinks this is (ga)b

Encrypts M with g ea −→ Decrypts M with g ea

Re-enrypts M with g eb −→ Decrypts M with g eb

Decrypts M ′ with g eb ←− Encrypts M ′ with g eb

Decrypts M ′ with g ea ←− Re-encrypts M ′ with g ea
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Security of Diffie-Hellman M. . . -in-the-Middle Attack

Protection Against MITM

Solution: keys need to be entity-authenticated (i.e. verified as belonging to
the correct person).

This is done using digital signatures, which we’ll discuss later.

MITM attack is an example of protocol failure that can happen when
adversarial models are too weak

Basic (un-authenticated, or anonymous) DH is provably secure
against passive adversaries (can only eavedrop)

Easily defeated by active adversary

Beware of cryptography textbooks that only focus on the mathematics and
ignore these issues!
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Efficiency of Diffie-Hellman Prime Generation and Testing

Generating Primes

Recall

Fermat’s Little Theorem

If p is a prime and a is an integer with p - a, then ap−1 ≡ 1 (mod p).

Given N (which may or may not be prime), let a ∈ ZN .

If aN−1 6≡ 1 (mod N), then N is composite (by Fermat).

If aN−1 ≡ 1 (mod N), then N could be prime, or it could be
composite in which case it is referred to as a “base a pseudoprime”.

Example 7

N = 15: 13N−1 ≡ 1314 ≡ 4 (mod 15), so 15 is not a prime.
1114 ≡ 1 (mod 15), so 15 is a base 11 pseudoprime.
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Efficiency of Diffie-Hellman Prime Generation and Testing

The Fermat Primality Test

Input: N
Output: “prime” or “composite”.

1 Generate random a ∈ ZN .

2 If gcd(a,N) > 1, output “composite” and stop.

3 If aN−1 6≡ 1 (mod N), output “composite”, else output “prime”.

The “else” clause in step 3 may produce a lie. Provably, this test lies with
expected probability ≤ 1/2, but in practice, it rarely lies.

To obtain a large prime:

1 Generate a random number N of the desired size

2 trial-divide N by all small primes (say up to a trillion)

3 If N passes step 2 (i.e. has no small prime factors), run the Fermat
test on N for a few small prime bases a. If N passes, declare N prime.
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Efficiency of Diffie-Hellman Prime Generation and Testing

Is this Fool-Proof?

Unfortunately, there are composite numbers (called Carmichael numbers)
for which aN−1 ≡ 1 (mod N) for ALL a ∈ Z∗N .

Thus, the Fermat test always lies for Carmichael numbers N.

The smallest Carmichael number is 561 = 3 · 11 · 17. The next few are
1105, 1729, 2465, 2821, 6601, 8911. These are all the Carmichael
numbers up to 10,000.

Even worse: it has been proved that there are infinitely many
Carmichael numbers (Alford-Granville-Pomerance 1994).

The good news is that they are very rare, so this test will give work
well for most integers (and works very well in practice).
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Efficiency of Diffie-Hellman Binary Exponentiation

Efficient Modular Exponentiation

Recall that Diffie Hellman requires computation of ga, gb, (ga)b, (gb)a

(mod p). How efficient is DH key agreement?

In other words, how fast is it to evaluate modular powers?

Fast modular exponentiation is also needed in the Fermat primality
test, the primitive root test, and RSA (later).

Goal: Efficiently evaluate an (mod m) given a, n,m.

One example: binary exponentiation

based on the binary expansion of n :

n = b02k + b12k−1 + · · ·+ bk−12 + bk

where b0 = 1, bi ∈ {0, 1} for 1 ≤ i ≤ k with k = blog2 nc.
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Efficiency of Diffie-Hellman Binary Exponentiation

Binary Exponentiation: Idea

Given b0, . . . , bk , we can evaluate n efficiently using Horner’s Method:

n = 2(. . . (2(2b0 + b1) + b2) · · ·+ bk−1) + bk .

Define s0 = b0, si+1 = 2si + bi+1 for 0 ≤ i ≤ k − 1. Then

s0 = b0

s1 = 2s0 + b1 = 2b0 + b1

s2 = 2s1 + b2 = 2(2b0 + b1) + b2 = 22b0 + 2b1 + b2

...

sk = n .

Using induction on i , one can formally prove:

si =
i∑

j=0

bj2
i−j for 0 ≤ i ≤ k .
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Efficiency of Diffie-Hellman Binary Exponentiation

Binary Exponentiation: Description

For 0 ≤ i ≤ k , define
ri ≡ asi (mod m) .

Then rk ≡ ask ≡ an (mod m) and we can compute rk iteratively as follows:

r0 ≡ as0 ≡ a (mod m)

r1 ≡ as1 ≡ a2s0+b1 ≡ (as0)2ab1 ≡ (r0)2ab1 (mod m)

...

ri+1 ≡ asi+1 ≡ a2si+bi+1 ≡ (asi )2abi+1 ≡ (ri )
2abi+1 (mod m) .
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Efficiency of Diffie-Hellman Binary Exponentiation

Binary Exponentiation: Algorithm

The actual algorithm:

1 Initialize r0 = a.

2 for 0 ≤ i ≤ k − 1 compute

ri+1 =

{
r2
i (mod m) if bi+1 = 0 ,

r2
i a (mod m) if bi+1 = 1 .

AKA “Square & Multiply”.
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Efficiency of Diffie-Hellman Binary Exponentiation

A Toy Example

Compute 213 (mod 22).

13 = 8 + 4 + 1 = 23 + 22 + 0 · 21 + 20 = (1101)2, so

k = 3 (one less than the number of bits in 13) and

b0 = 1, b1 = 1, b2 = 0, b3 = 1.

Initialization: r0 = 2

Since b1 = 1: r1 ≡ r2
0 a ≡ 22 · 2 ≡ 8 (mod 22)

Since b2 = 0: r2 ≡ r2
1 ≡ 82 ≡ 20 (mod 22)

Since b3 = 1: r3 ≡ r2
2 a ≡ 202 · 2 ≡ (−2)2 · 2 ≡ 8 (mod 22)

Answer: 213 ≡ 8 (mod 22) .
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Efficiency of Diffie-Hellman Binary Exponentiation

Binary Exponentiation: Analysis

What is the computational cost of this? Recall

ri+1 =

{
r2
i (mod m) if bi+1 = 0 ,

r2
i a (mod m) if bi+1 = 1 ,

(0 ≤ i ≤ k − 1) .

k modular squarings

h(n)-1 modular multiplications by a, where h(n) is the Hamming
weight of n, i.e. the number of ‘1’s in the binary expansion of n.

Total cost: at most 2blog2(n)c modular multiplications.

Also note that all intermediate operands are smaller than m2

Important that ri is reduced modulo m after every operation
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Where are we at?

Were are we at?

Recall cryptographic services:

Data confidentiality: discussed

Data integrity: next

Authentication: next

Non-repudiation

Access Control: discussed a bit

Recall cryptographic mechanisms:

Encryption — for confidentiality and limited data integrity: discussed

Hash functions, Message Authentication Codes (MACs) — for data
integrity : next

Digital signatures — for data origin authentication and
non-repudiation

Authentication protocol — for entity authentication
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