
CPSC 418/MATH 318 Introduction to Cryptography
Hash Functions and Message Authentication Codes

Renate Scheidler

Department of Mathematics & Statistics
Department of Computer Science

University of Calgary

Week 7

Question: What do security analysts call a set of identical twins?

Answer: A hash collision.

Outline

1 Hash Functions
Iterated Hash Functions
SHA-3 (Keccak)

2 Attacks on Hash Functions
Brute-force Attacks
Cryptanalytic Attacks

3 Message Authentication Codes
CMAC

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 7 1 / 44

Hash Functions

Hash Functions

Often referred to as the “work horse” of cryptography — they are
ubiquitous in crypto.

Definition 1 (Hash function)

A function H : {0, 1}∗ → {0, 1}m (m ∈ N) that is easy to compute. An
image x = H(M) is referred to as a message digest or a digital fingerprint
or a checksum or simply a hash.

Hash functions thus satisfy two properties:

Compression: H maps an input M of arbitrary bit length to an output
of fixed bit length.

Ease of computation: for any input M, H(M) is easy to compute.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 7 2 / 44

Hash Functions

Cryptographic Requirements

Desirable properties for hash functions in the context of cryptography:

Pre-image resistance: given any hash value x , it is computationally
infeasible to find a pre-image of x , i.e. any input M for which
H(M) = x .

Collision resistance or strong collision resistance: it is computationally
infeasible to find a strong collision, i.e. two distinct inputs M and M ′

such that H(M) = H(M ′).

Second pre-image resistance or weak collision resistance: given any
M, it is computationally infeasible to find a weak collision, i.e. an
input M ′ 6= M with H(M) = H(M ′).

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 7 3 / 44



Hash Functions

Relationships

Strong Collision
Resistance

Preimage
Resistance

Weak Collision
Resistance

Strong collision resistance implies weak collision resistance because every
weak collision is also a strong collision.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 7 4 / 44

Hash Functions

Uses of Cryptographically Secure Hash Functions

Definition 2

A hash function is cryptographic(ally secure) if it is pre-image resistant
and collision resistant.

Some example applications:

In digital signatures (including the post-quantum scheme SPHINCS+)
to prevent impersonation (sign H(M) instead of M — later)

Data integrity without secrecy (e.g. downloading large files, compare
checksum before and after download)

Data integrity with secrecy (see below)

Key derivation (e.g. use hash of a Diffie-Hellman secret as your key)

Commitment (can verify H(M) to see if M was committed to)

Randomness (e.g. dev/random, one-time passwords, OAEP — later)

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 7 5 / 44

Hash Functions

Application: Data Integrity with Secrecy

Using hashing plus encryption:

Sender sends C = EK (M‖x) with x = H(M)

Receiver decrypts C to obtain M ′, x ′ and checks that H(M ′) = x ′.

Idea:

Adversary cannot manipulate ciphertext blocks in such a way that
H(M ′) = x ′.

May be possible if H is not cryptographically secure (eg. WEP:
combination of stream cipher and checksum).

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 7 6 / 44

Hash Functions Iterated Hash Functions

Iterated Hash Function Design

Iterated hash functions are composed of rounds (like DES or AES)

Repeated use of compression function f — takes m-bit input from the
previous step (chaining variable) and an r -bit block from M; produces
m-bit output.

Input to H : message M consisting of r -bit blocks P1, . . . ,PL

(padded, if necessary, so the total length is a multiple of r).

H0 = IV (initial m-bit value, e.g. all zeros)

Hi = f (Hi−1,Pi ), 1 ≤ i ≤ L

H(M) = HL

Iterated hash functions can be set up in such a way so that if f is
collision-resistant, so is H (Merkle 1989 and Damgard 1989).

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 7 7 / 44



Hash Functions Iterated Hash Functions

SHA-1

Secure Hash Algorithm 1 (SHA-1)

Developed by NIST in 1993 (FIPS 180 and FIPS 180-1).

Iterated round hash function with hash length 160 bits.

Can now find SHA-1 collisions in 257 attempts.

Longer versions (up to 512 bits) still certified for use under SHA-2
— more on that later.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 7 8 / 44

Hash Functions Iterated Hash Functions

SHA-1: Overview

Messages (padded suitably) are processed in 512-bit blocks, divided into
16 words of bit length 32 each.

Hash function operates on 160-bit buffers, divided into 5 words of bit
length 32 each:

Current message block is processed with current buffer via four
rounds of 20 steps each.

Next buffer is produced by adding wordwise (modulo 232) the current
buffer to the output of the fourth round.

Hash value is the final buffer value.

For details, consult the SHA-1 handout on the “handouts” page.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 7 9 / 44

Hash Functions Iterated Hash Functions

Attacks on SHA-1

Finding collisions:

Wang, Yin, Yu (Feb. 2005) — 269 hash ops

Wang, Yao, Yao (Aug. 2005) — 263 hash ops

Stevens (2013) — 260 hash ops

Stevens, Karpman, Peyrin (2015) — 257.5 hash ops

Practical implementations in 2017 (CWI Amsterdam-Google team
including Stevens & Karpman, https://SHAttered.io/) and 2020
(Leuren-Peyrin, https://SHA-mbles.github.io)

Significantly less than theoretical maximum (280) — therefore, considered
vulnerable.

Replaced by SHA-2 and SHA-3 in August 2015. See the hash function
page at https://csrc.nist.gov/projects/hash-functions
under NIST’s Cryptographic Standards and Guidelines website for more.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 7 10 / 44

Hash Functions Iterated Hash Functions

The SHAttered Attack

Two different files with the same SHA-1 tag:

(Taken from https://SHAttered.io/)

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 7 11 / 44

https://SHAttered.io/
https://SHA-mbles.github.io
https://SHAttered.io/


Hash Functions Iterated Hash Functions

Some Other Hash Functions

MD5 — 128-bit hash length, developed by Rivest.

Essentially broken (Wang et. al., 2004). MD5 collision found on a
laptop in 8 hours (Klima, 2005).

Revised hash standard SHA-2 consisting of SHA-224 , SHA-256, SHA-384,
SHA-512, SHA-512/224 and SHA-512/256 (see FIPS 180-4):

modifications of SHA-1 to provide 112, 128, 192, and 256 bits of
security for compatibility with 3DES and AES.

current recommendation: if unable to convert to SHA-3, use one of
these in place of SHA-1.

Charles, Goren, Lauter (2009) — hash function based on expander graphs

provable security: finding collisions reduces to computing isogenies
between supersingular elliptic curves

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 7 12 / 44

Hash Functions SHA-3 (Keccak)

SHA-3

After the 2005 attack on SHA-1, NIST initiated a competition for new
hash algorithms, similar to the AES competition. It ran 2007-2012 and a
SHA-3 standard was adopted on August 5, 2015.

SHA-3 winner: Keccak (pronounced “ketchuk”), invented by

Guido Bertoni (Italy) of STMicroelectronics,
Joan Daemen (Belgium) of STMicroelectronics (one of the
AES/Rijndahl creators!),
Michaël Peeters (Belgium) of NXP Semiconductors,
Gilles Van Assche (Belgium) of STMicroelectronics.

Resources:

NIST FIPS 202
http://keccak.noekeon.org/Keccak-reference-3.0.pdf

KECCAK presentation given to NIST by the Keccak inventors on Feb.
6, 2013 (on “handouts” page)

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 7 13 / 44

Hash Functions SHA-3 (Keccak)

Sponge Construction

Keccak is based on a sponge design; see
https://keccak.team/sponge_duplex.html.

Hash function: arbitrary input length, fixed output length

Stream cipher: fixed input length, arbitrary output length

Sponge function: arbitrary input length, variable user-supplied output
length

Sponges can be used to build various cryptographic primitives (stream
ciphers, hash functions, message authentication codes)

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 7 14 / 44

Hash Functions SHA-3 (Keccak)

Sponges – Overview

Ingredients of a sponge function:

A width b (an integer)

A bit rate r (an integer < b)

An input S (a bit string of length b)

A fixed-length permutation f that operates on S

A padding rule “pad ” that pads blocks of length r to blocks of
length b.

The capacity of the sponge is the padding amount c = b − r .

The padding rule for Keccak simply appends the string 100 · · · 0︸ ︷︷ ︸
c-2 zeros

1 to each
r -bit block (called multi-rate padding).

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 7 15 / 44

http://keccak.noekeon.org/Keccak-reference-3.0.pdf
https://keccak.team/sponge_duplex.html


Hash Functions SHA-3 (Keccak)

Sponge Function – Absorb

The input to the absorption phase is the message M — padded so the
total length is a multiple of r — consisting of r -bit blocks P1, . . . ,PL.

The output is a string S of length b.

Absorption Phase — “x-or & permute”

S ← 0b (b zeros)
For i = 1 to L do

S ← S ⊕ pad(Pi )
S ← f (S)

end for

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 7 16 / 44

Hash Functions SHA-3 (Keccak)

Sponge Function – Squeeze

The squeezing phase outputs on input S a hash of the message M whose
bit length is a user-supplied value m.

Squeezing Phase — “permute & append”

Z ← first r bits of S
While length(Z ) < m do

S ← f (S)
append the first r bits of S to Z

end while
H(M)← first m bits of Z

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 7 17 / 44

Hash Functions SHA-3 (Keccak)

SHA-3 Specification

SHA-3/Keccak specifies

hash lengths m = 224, 256, 384, 512 (just like SHA-2)

capacities c = 2m

widths b = 25, 50, 100, 200, 400, 800, 1600 (default is 1600)

The internal state to the Keccak permutation f , denoted A, is a
3-dimensional bit-array of dimensions 5× 5× 2` where 0 ≤ ` ≤ 6, yielding
the above widths (default is ` = 6, with a state of dimensions 5× 5× 64).

The Keccak permutation f iterates over multiple rounds. In SHA-3, the
number of rounds Nr is 12 + 2`. (E.g. Nr = 24 for for b = 1600.) Each
round of f operates on the state A and is the composition of 5 functions:

ι ◦ χ ◦ π ◦ ρ ◦ θ

where θ, ρ, π and χ are identical for each round, and ι incorporates round
constants that vary by round.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 7 18 / 44

Hash Functions SHA-3 (Keccak)

The Keccak Permutation f

Input: bit string S of length b

Output: bit string S of length b

1 Convert S to a 5× 5× 2` state A (where b = 5 · 5 · 2`)
2 For i = 0 to Nr − 1 do

A← ι(χ(π(ρ(θ(A)))), i)

3 Convert A to a string S of length b

4 Output S

The mathematical description of each of the 5 maps θ, ρ, π, χ and ι can
be found on page 8 of Keccak-reference-3.0.pdf. They can all be
implemented using only bitwise XOR, AND, NOT, but no table look-ups,
arithmetic or data-dependent rotations (very fast).

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 7 19 / 44



Hash Functions SHA-3 (Keccak)

Geography of Keccak States

State entries are denoted A[x , y , z ] where

0 ≤ x ≤ 4 , 0 ≤ y ≤ 4 , 0 ≤ z ≤ 2` − 1 .

E.g. for b = 1600 (` = 6), we have 0 ≤ x ≤ 4, 0 ≤ y ≤ 4, 0 ≤ z ≤ 63.

Navigating States:

Rows: A[0, y , z ] A[1, y , z ] A[2, y , z ] A[3, y , z ] A[4, y , z ]
Columns: A[x , 0, z ] A[x , 1, z ] A[x , 2, z ] A[x , 3, z ] A[x , 4, z ]
Lanes: A[x , y , 0] A[x , y , 1] A[x , y , 2] · · · A[x , y , 2` − 1]

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 7 20 / 44

Hash Functions SHA-3 (Keccak)

Converting Bit Strings to States

Suppose the input string consists of bits

s0, s1, . . . , sb−1 .

Then
A[x , y , z ] = s2`(5y+x)+z .

So A is populated lane-wise, “floor” by “floor”:

starting with the bottom row of lanes (ground floor)

followed by the row of lanes second from the bottom (second floor)

followed by the middle, then the second from the top, then the top
row of lanes

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 7 21 / 44

Hash Functions SHA-3 (Keccak)

Converting Bit Strings to States (cont’d)

We assign the bits si (0 ≤ i ≤ b − 1) to A in the following order:

y = 0 x = 0 z = 0, 1, . . . 2` − 1
x = 1 z = 0, 1, . . . 2` − 1

...
...

x = 4 z = 0, 1, . . . 2` − 1

y = 1 x = 0 z = 0, 1, . . . 2` − 1
x = 1 z = 0, 1, . . . 2` − 1

...
...

x = 4 z = 0, 1, . . . 2` − 1
...

...
...

y = 4 x = 0 z = 0, 1, . . . 2` − 1
...

...
x = 4 z = 0, 1, . . . 2` − 1

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 7 22 / 44

Hash Functions SHA-3 (Keccak)

Converting States to Bit Strings

Conversion from the final state A to the bit string S is done in by reversing
this process (order lane–row–column):

S = A[0, 0, 0] A[0, 0, 1] . . . A[0, 0, 2` − 1]

A[1, 0, 0] A[1, 0, 1] . . . A[1, 0, 2` − 1]

A[2, 0, 0] A[2, 0, 1] . . . A[2, 0, 2` − 1]

A[3, 0, 0] A[3, 0, 1] . . . A[3, 0, 2` − 1]

A[4, 0, 0] A[4, 0, 1] . . . A[4, 0, 2` − 1]

A[0, 1, 0] A[0, 1, 1] . . . A[0, 1, 2` − 1]
· · ·

A[4, 1, 0] A[4, 1, 1] . . . A[4, 1, 2` − 1]

· · ·

A[0, 4, 0] A[0, 4, 1] . . . A[0, 4, 2` − 1]
· · ·

A[4, 4, 0] A[4, 4, 1] . . . A[4, 4, 2` − 1]

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 7 23 / 44



Hash Functions SHA-3 (Keccak)

The Map θ

θ adds to each bit A[x , y , z ] the bitwise x-or of the parities of the two
columns A[x − 1, ∗, z ] and A[x + 1, ∗, z − 1], where the x-index is taken
modulo 5 and the z-index modulo 2`.

1 For all pairs (x , z) with 0 ≤ x ≤ 4 and 0 ≤ z ≤ 2`−1 do
// x-or all columns A[x , ∗, z ] to compute parities
C [x , z ]← A[x , 0, z ]⊕ A[x , 1, z ]⊕ A[x , 2, z ]⊕ A[x , 3, z ]⊕ A[x , 4, z ]

2 For all pairs (x , z) with 0 ≤ x ≤ 4 and 0 ≤ z ≤ 2`−1 do
D[x , z ]← C [(x − 1) mod 5, z ]⊕ C [(x + 1) mod 5, (z − 1) mod 2`]

3 For all triples (x , y , z) with 0 ≤ x ≤ 4, 0 ≤ y ≤ 4, 0 ≤ z ≤ 2`−1 do
A[x , y , z ]← A[x , y , z ]⊕ D[x , z ]

θ provides a high level of diffusion.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 7 24 / 44

Hash Functions SHA-3 (Keccak)

The Map ρ

ρ rotates the bits of each lane by adding to the z-coordinate an offset
modulo 2` (circular shift along the lane) as given in the following table:

x = 3 x = 4 x = 0 x = 1 x = 2

y = 2 153 231 3 10 171
y = 1 55 276 36 300 6
y = 0 28 91 0 1 190
y = 4 120 78 210 66 253
y = 3 21 136 105 45 15

Consult pages 12-13 of FIPS 202 or page 8 of Keccak-reference-3.0.pdf to
see how these offsets are calculated.

ρ disperses slices A[x , y , ∗] for more diffusion.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 7 25 / 44

Hash Functions SHA-3 (Keccak)

The Map π

π rearranges all the lanes, moving lane

A[x , y , ∗]

to lane
A[(x + 3y) mod 5, x , ∗] .

This lane dispersion provides yet more diffusion.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 7 26 / 44

Hash Functions SHA-3 (Keccak)

The Map χ

χ x-or’s each bit A[x , y , z ] with the non-linear function of two bits in the
same row given by

A[(x + 1) mod 5, y , z ] ∧ A[(x + 2) mod 5, y , z ]

where A denotes the bit complement of A and ∧ denotes logical “and”
(multiplication modulo 2).

χ is the only non-linear map within Keccak.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 7 27 / 44



Hash Functions SHA-3 (Keccak)

The Map ι

ι x-or’s the ` bits A[0, 0, 2j − 1] (0 ≤ j ≤ `) with round constants
rc(j + 7i) where i is the round number.

Here, rc[t] is the constant coefficient of x t modulo x8 + x6 + x5 + x4 + 1
which can be obtained via some simple bit x-ors and truncations as the
output of a linear feedback shift register (LSFR) (see page 16 of FIPS
202).

ι disrupts symmetry.

ι acts only on a few bits in lane A[0, 0, ∗], but the lane rearrangement π
and the slice dispersion ρ ensure that this action affects every lane of A.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 7 28 / 44

Hash Functions SHA-3 (Keccak)

Concluding Remarks on SHA-3 and Keccak

Keccak is secure against all known attacks.

In addition to the four hash functions SHA3-m that produce hashes of
lengths m = 224, 256, 384, 512 using capacities c = 2m, the SHA-3
standard supports two other Keccak-based extendable output functions
SHAKE128 and SHAKE256 (supporting variable length outputs) that
produce hashes of the same four lengths m using respective fixed capacities
256 and 512. (Not approved yet, guidelines for use promised in the future.)

Four other SHA-3 derived functions (called cSHAKE, KMAC, TupleHash
and ParallelHash) are described in NIST SP 800-185.

See https://csrc.nist.gov/projects/hash-functions for details.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 7 29 / 44

Attacks on Hash Functions

Attacks on Hash Functions

Objectives of adversaries attacking hash functions:

Find a pre-image: given any hash, create a corresponding message
with that hash.

Find a weak collision: given a message, modify it to another message
with the same hash.

Find a collision: find two messages with the same hash.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 7 30 / 44

Attacks on Hash Functions Brute-force Attacks

Brute-force Attacks

Like block ciphers, brute force should be the best attack.

For an m-bit hash function:

Pre-images and weak collisions: 2m attempts on average (≈ 0.69 · 2m
attempts for a 50% chance of finding a weak collision; see Problem 3
on Assignment 1)

Strong collisions: 2m/2 attempts on average due to the birthday
paradox: expect that ≈ 1.177 ·

√
2m trials yield a 50% chance of

finding a collision (see Problem 4 on Assignment 1 or page 145 of
Paterson-Stinson)

Recommended sizes: m = 224, 256, 394, 512 (provide 112, 128, 192, and
256 bits of security)

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 7 31 / 44



Attacks on Hash Functions Brute-force Attacks

Weak Versus Strong Collision Resistance

Recall that every strongly collision resistant hash function is also weakly
collision resistant (because every weak collision is also a strong collision).

What about a weakly collision resistant hash function that is not strongly
collision resistant?

Let m be of a size where

searching a space of size 2m is computationally infeasible,

searching a space of size 2m/2 is computationally feasible.

(E.g. m = 112, like in 3DES versus DES.)

Then we expect an m-bit hash function to be

pre-image resistant

weakly collision resistant

not strongly collision resistant

Strong Collision
Resistance

Preimage
Resistance

Weak Collision
Resistance

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 7 32 / 44

Attacks on Hash Functions Brute-force Attacks

Birthday Attack on Digital Signatures

Birthday attack on signature schemes with hash functions (more later):

Attacker generates 2m/2 variations of a valid message (easy to do by
adding/removing white space, replacing synonyms, etc...).

Attacker generates 2m/2 variations of a desired fraudulent message.

The two sets of messages are compared to find a pair with the same
hash.

Attacker has the victim sign the hash of the valid message — the
signature will also be valid for the fraudulent message.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 7 33 / 44

Attacks on Hash Functions Cryptanalytic Attacks

Cryptanalytic Attacks

Recall that iterated hash functions H (like SHA-1 and MD5) are composed
of rounds that iteratively use a compression function f .

Iterated hash functions can be set up in such a way so that if f is
collision-resistant, so is H (Merkle 1989 and Damgard 1989).

An attack approach is to exploit the structure of the hash function (similar
to block ciphers):

Analytically attack the rounds of a hash function

Focus on collisions in function f .

Many hash functions have succumbed to this type of attack (due to
Wang et al).

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 7 34 / 44

Message Authentication Codes

Message Authentication Codes

A small, fixed-size, key-dependent block that is appended to a message to
check data integrity — AKA keyed hash function or tag.

Definition 3 (Message authentication code (MAC))

A single-parameter family {MACK}K∈K of many-to-one functions
MACK :M→ {0, 1}n (n ∈ N) satisfying:

Ease of computation with knowledge of K: For any M ∈M and
K ∈ K, MACK (M) is easy to compute.

Computation resistance: for any K ∈ K, given zero or more
message/MAC pairs (Mi ,MACK (Mi )), it is computationally infeasible
to compute any new message/MAC pair (M,MACK (M)), M 6= Mi

for all i , without knowledge of K .

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 7 35 / 44



Message Authentication Codes

More on Computation Resistance

Common error: confusing computation resistance with collision resistance
or pre-image resistance!

The two are very different:

Unlike collision resistance, computation resistance does not ask for
two different messages with the same MAC.

Unlike pre-image resistance, computation resistance does not ask for
a pre-image of a given MAC tag.

Rather, computation resistance asks for a valid message/MAC pair
where the message is new.

The idea is that despite observing a collection of message/MAC pairs
(Mi ,MACK (Mi )) exchanged between Alice and Bob, Eve cannot
authenticate a message that was not already sent.
In practice, Alice and Bob should time-stamp their messages to avoid
replays by Eve.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 7 36 / 44

Message Authentication Codes

Data Integrity using MACs

Computation resistance implies data integrity (without secrecy):

Sender and receiver share a secret key K .

Sender computes T = MACK (M) and sends (M,T ).

Upon receiving a pair (M ′,T ′) from the sender, the receiver checks
whether T ′ = MACK (M ′). If this computation checks out and MACK

is computation resistant, the integrity of M is preserved, i.e. M ′ = M
(as (M ′,T ′) would be a new message/MAC pair otherwise).

Active attack:

Attacker suppresses (M,T ) and instead sends a pair (M ′′,T ′′) with
M ′′ 6= M to the receiver.

Receiver checks if MACK (M ′′) = T ′′. If this holds, the attacker must
have defeated computation resistance by generating a new pair
(M ′′,T ′′) from (M,T ).

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 7 37 / 44

Message Authentication Codes

Sender Authentication using MACs

MACs also provide limited sender authentication in a similar manner to
encryption

only sender or receiver (who both know K ) can generate the MAC.

Note: Non-repudiation of data origin not provided

either party possessing K can generate the MAC.

In practice, digital signatures should be used, which provide both sender
authentication and non-repudiation (more later).

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 7 38 / 44

Message Authentication Codes

MAC Versus Encryption

Differences between encryption and MACs:

Encryption MAC

Secrecy No secrecy
Reversible via decryption Need not be reversible

Injective Many messages with the same MAC

Note 1

Just like in encryption, MAC should depend equally on all bits of the
message. Given a valid message/MAC pair, it should still be hard to find
another valid pair even if only one bit of the message is modified.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 7 39 / 44



Message Authentication Codes CMAC

MACs from Block Ciphers

A secure block cipher (satisfying additional statistical properties) can be
used to generate MACs. Two methods are:

1 CBC-MAC:

Encrypt the message (IV of all zeros, last block padded with 0s)
using CBC mode.

The last cipher block (whose bits are dependent on all the key
bits and all message bits) is the MAC.

2 CFB-MAC: Same idea as CBC-MAC

A CBC-MAC using DES appears in both FIPS 113 and the ANSI X9.17
standard.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 7 40 / 44

Message Authentication Codes CMAC

Problem with CBC-MAC

Problem: only secure if messages of one fixed length are processed
(Bellare, Killian, Rogaway 2000).

Solution (CMAC):

Use three keys, one at each step of the chaining, two for the last
block (Black-Rogaway 2000).

Second two keys may be derived from the encryption key (Iwata,
Kurosawa 2003).

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 7 41 / 44

Message Authentication Codes CMAC

Properties of CMAC

Cipher-based Message Authentication Code (CMAC)

Specified for use with AES and 3DES in NIST Special Pub. 800-38B

Can be proved secure as long as the underlying block cipher’s output
is indistinguishable from a random permutation.

No known weaknesses.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 7 42 / 44

Message Authentication Codes CMAC

Operation of CMAC

Message M is padded so its length is a multiple of the cipher’s block
length n (128 for AES, 64 for 3DES) by appending a 1 and as many 0s as
necessary, then divided into blocks M1, . . . ,Mm.

Let K be the block cipher key. Two additional keys K1 and K2 are
computed as follows:

L = EK (0n)

K1 = L · x
K2 = L · x2 = K1 · x

where · denotes multiplication of polynomials with bit coefficients modulo
x64 + x4 + x3 + x + 1 or x128 + x7 + x2 + x + 1 (i.e., mult. in GF (2n)).

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 7 43 / 44



Message Authentication Codes CMAC

Operation of CMAC, cont.

To compute the MAC of message M, process blocks M1, . . . ,Mm−1 using
CBC with IV = 0 :

C0 = 0n

Ci = EK (Mi ⊕ Ci−1) 1 ≤ i ≤ m − 1 .

Compute
Cm = EK (Mm ⊕ Cm−1 ⊕ Ki )

where i = 1 if M was not padded and i = 2 if M was padded.

MAC is the s leftmost (most significant) bits of Cm (where s is determined
by the desired level of security).

Identical to CBC-MAC except for the last round.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 7 44 / 44


	Hash Functions
	Iterated Hash Functions
	SHA-3 (Keccak)

	Attacks on Hash Functions
	Brute-force Attacks
	Cryptanalytic Attacks

	Message Authentication Codes
	CMAC


