
CPSC 418/MATH 318 Introduction to Cryptography
More on Message Authentication Codes, Public Key Cryptography,

RSA

Renate Scheidler

Department of Mathematics & Statistics
Department of Computer Science

University of Calgary

Week 8

Outline

1 Message Authentication Codes
Recap
HMAC
KMAC
Authenticated Encryption

2 Attacks on MACs

3 Where are we at?

4 Public-Key Cryptography

5 The RSA Cryptosystem

6 More Number Theory – Modular Inverses

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 8 1 / 39

Message Authentication Codes Recap

Message Authentication Codes – Recap

Definition 1 (Message authentication code (MAC))

A single-parameter family {MACK}K∈K of many-to-one functions
MACK :M→ {0, 1}n (n ∈ N) satisfying:

Ease of computation with knowledge of K: For any M ∈M and
K ∈ K, MACK (M) is easy to compute.

Computation resistance: for any K ∈ K, given zero or more
message/MAC pairs (Mi ,MACK (Mi)), it is computationally infeasible
to compute any new message/MAC pair (M,MACK (M)), M 6= Mi

for all i , without knowledge of K .

Computation resistance provides message integrity (infeasible to generate
a valide message/MAC pair (M,MACK (M)) without knowledge of K .

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 8 2 / 39

Message Authentication Codes Recap

MAC Constructions

From a block cipher:

Apply block cipher to message using a suitable mode of operation

Last encrypted block is the MAC tag

CBC-MAC, CFB-MAC, CMAC

Can also construct MACs from hash functions by incorporating a key.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 8 3 / 39

Message Authentication Codes HMAC

MACs from Hash Functions

Basic idea: MAC = H(M,K) where H is a cryptographically secure hash
function and K is a secret key.

Advantage over CMAC: hash functions are faster than block ciphers.

Approaches:

MAC = H(M‖K) : insecure if H is iterated

MAC = H(K‖M) : similar problem

MAC = H(K1‖M‖K2) : “Sandwich MAC” — better, but potentially
also vulnerable

MAC = H(K1‖H(K2‖M)) : Bellare, Canetti, Krawczyk (CRYPTO
1996) — HMAC

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 8 4 / 39

Message Authentication Codes HMAC

HMAC

Hash based message authentication code (HMAC):

HMACK (M) = H
(
(K+ ⊕ opad︸ ︷︷ ︸

K1

) ‖ H(K+ ⊕ ipad︸ ︷︷ ︸
K2

‖M)
)

Description (assume H has compression function f and operates on b-bit
blocks, eg. b = 512 for SHA-1):

1 K+ = 0 . . . 0K (0-bits prepended to K so K+ has b bits)

2 K1 = K+ ⊕ opad, with opad = (01011100)b/8

3 K2 = K+ ⊕ ipad, with ipad = (00110110)b/8

4 T = H(K2‖M) (note that f (IV ,K2) can be precomputed)

5 HMACK (M) = H(K1‖T) (note that f (IV ,K1) can be precomputed)

See FIPS 198.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 8 5 / 39

Message Authentication Codes HMAC

Properties of HMAC

K1 = K+ ⊕ ipad and K2 = K+ ⊕ opad are two pseudorandom keys
derived from K by flipping some bits in the padded key K+.

Only three additional executions of f needed compared with just
hashing M

Only one if key-dependent precomputations are used

Provably secure; security is equivalent to one of the following:

Computing an output of f assuming IV is unknown

Finding collisions in H assuming IV is unknown.

A birthday attack based on the second scenario is possible:

Significantly more difficult than ordinary birthday attack

Requires a MAC-generating oracle to compute valid
message/MAC pairs because IV is secret

Details and a diagram in the HMAC handout on our “handouts” page.
Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 8 6 / 39

Message Authentication Codes KMAC

MAC from SHA-3

KMAC (Keccak Message Authentication Code) is a SHA-3 derived
message authentication method:

Concatenates K with M and desired hash length m and passes
concatenation to the SHA-3 derived hash function cSHAKE:

KMACK (M) = cSHAKE (K‖M‖m).

Not vulnerable to the attacks on prepend construction
MACK = H(K‖M) for iterated hash functions H.

Can also be used as a pseudorandom function.

See NIST SP 800-185.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 8 7 / 39

Message Authentication Codes Authenticated Encryption

Authenticated Encryption

MACs can be combined with block ciphers to provide confidentiality and
message integrity via authenticated encryption.

“Encrypt-then-MAC”: send C‖MACK ′(C) where C = EK (M)

Formally secure (Bellare-Namprempre 2007) since it preserves the
integrity of the ciphertext and protects against malleability

Prone to implementation errors (e.g. problem in IPSec found by
Ferguson-Schneier 2003)

“MAC-then-encrypt”: send EK (M‖MACK ′(M))

More natural, less error-prone

Can be more practical — if encryption is defeated or obviated,
message integrity remains preserved

There is also a “hash-then-encrypt” alternative

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 8 8 / 39

Message Authentication Codes Authenticated Encryption

Why MACs?

Why use MACs, as opposed to “hash-then-encrypt” C = EK (M‖H(M))?

Sometimes only integrity is needed (no secrecy).

Why use “MAC-then-encrypt” versus “encrypt-then-MAC”?

May need integrity longer than encryption (eg. archival use).

Used in older versions of SSL/TLS.

Another variant is “MAC-and-encrypt” — send C = EK (M)‖MACK ′(M)

Integrity and security are completely decoupled.

Used in older versions of SSH.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 8 9 / 39

Message Authentication Codes Authenticated Encryption

Data Integrity via Modes of Operation

Combining cryptographic primitives (e.g. encryption with MACs) can be
wrought with problems.

Block cipher modes of operation with built-in authentication are a more
recent alternative approach.

E.g. GMAC and Galois Counter Mode (GCM), derived from CTR
mode; see NIST SP 800-38D

GCM uses arithmetic modulo x128 + x7 + x2 + x + 1 (same
polynomial as in CMAC)

Used in TLS 1.3 (see IETF RFC 8446,
https://tools.ietf.org/html/rfc8446, 2018)

Another authentication mode is CCM (counter with CBC-MAC; see
NIST SP 800-38C)

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 8 10 / 39

Attacks on MACs

Attacks on MACs

The objective of adversary is to defeat computation resistance:

Given zero or more pairs (Mi ,MACK (Mi)), i = 1, 2, . . ., compute a
new message/MAC pair (M,MACK (M)) for some message M 6= Mi

for all i , without knowledge of K .

Known-message, chosen-message, and adaptive-chosen-message
variations are possible.

A more ambitious adversarial goal is to find the MAC key K .

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 8 11 / 39

https://tools.ietf.org/html/rfc8446

Attacks on MACs

Exhaustive Search Attack on MAC Space

Assume n-bit MACs, m-bit keys.

Attack:

Pick a message, guess the MAC value (probability 2−n of being
correct).

Requires “black-box” MAC verifier to confirm guesses.

Expected number of attempts is 2n.

Does not find the MAC key.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 8 12 / 39

Attacks on MACs

Exhaustice Search Attack on Key Space

Assumes m > n (longer keys than MACs, reasonable). This is a KPA:

Given M1 and MAC 1 = MACK (M1), compute MAC i1 = MACKi
(M1)

for all possible keys Ki (1 ≤ i ≤ 2m).

Expect 2m−n keys to produce a match MAC 1 = MAC i1 (2m MACs
produced, only 2n possible MACs).

Repeat on all matches with M2 and MAC 2 = MACK (M2), reducing
the number of possible keys to 2m−2n. Iterate with Mj and
MAC j = MACK (Mj), j = 3, 4, . . .

Requirements:

dm/ne message/MAC pairs (m/n rounded up)

dm/ne · 2m MAC computations, but these can be conducted off-line if
M1,M2, . . . are known in advance.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 8 13 / 39

Attacks on MACs

Summary on MAC Attacks

Brute-force attacks (n-bit MACS, m-bit keys):

1 2n to defeat computation resistance (find a valid message/MAC pair)

2
⌈
m
n

⌉
2m to find a MAC key

As usual, this should be best possible.

Cryptanalytic attacks also possible:

For CMAC, one can try to attack the underlying block cipher.

For HMAC and KMAC, one can try to attack the underlying hash
function.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 8 14 / 39

Where are we at?

Were are we at?

Recall cryptographic services:

Data confidentiality: discussed, also next

Data integrity: discussed

Authentication: discussed for data

Non-repudiation

Access Control: discussed a bit

Recall cryptographic mechanisms:

Encryption — for confidentiality and limited data integrity:
discussed, also next

Hash functions, Message Authentication Codes (MACs) — for data
integrity: discussed

Digital signatures — for data origin authentication and
non-repudiation

Authentication protocol — for entity authentication
Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 8 15 / 39

Public-Key Cryptography

Back to Cryptographic Key Agreement

Recall efficient solutions to the key establishment problem:

1 Diffie-Hellman key agreement protocol

2 Public key cryptography — next!

Also used for authentication — later!

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 8 16 / 39

Public-Key Cryptography

Public-Key Cryptography

Whitfield Diffie and Martin Hellman, “New Directions in Cryptography”,
1976.

Note that Diffie and Hellman did not describe a specific means of
implementing a public-key cryptosystem.

They merely described how one could be used to achieve security,
authentication, (and indirectly, integrity and non-repudiation).

Public key crypto was also secretly discovered in 1970 as “non-secret
encryption” by James H. Ellis of the UK’s Government Communications
Headquarters (GCHQ)

Disclosed in 1987; see
http://cryptocellar.org/cesg/possnse.pdf

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 8 17 / 39

Public-Key Cryptography

Idea of Public-Key Cryptography

Every user has two keys:

Encryption key is public (so everyone can encrypt messages)

Decryption key is only known to the receiver

Deducing the decryption key from the encryption key should be
computationally infeasible.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 8 18 / 39

Public-Key Cryptography

Diagram of a Public-Key Cryptosystem

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 8 19 / 39

http://cryptocellar.org/cesg/possnse.pdf

Public-Key Cryptography

Trap-door One-Way Functions

Definition 2 (Trap-door one-way function)

A function f that satisfies the following properties:

1 Ease of Computation: f (x) is easy to compute for any x .
2 “Trap-door Pre-image Resistance”: Given y = f (x) it is

computationally infeasible to determine x unless certain special
information used in the design of f is known.

When this trap-door k is known, there exists a function g which is easy
to compute such that x = g(k, y).

Key to designing public-key cryptosystems: decryption key acts as a trap
door for the encryption function.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 8 20 / 39

Public-Key Cryptography

Public-Key Cryptosystem

Definition 3 (Public Key Cryptosystem (PKC))

A PKC consists of a plaintext space M, a ciphertext space C, a public key
space K, and encryption functions EK1 :M→ C, indexed by public keys
K1 ∈ K, with the following properties:

1 For every public key K1, there exists a private key K2 such that the
encryption function EK1 has a left inverse DK2 , i.e.

DK2(EK1(M)) = M for all M ∈M.

2 EK1(M) and DK2(C) are easy to compute when K1 and K2 are known.

3 Given K1, EK1 , and C = EK1(M), it is computationally infeasible to
find M or K2.

By properties 1-3, EK1 is a trap-door one-way function with trap door K2.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 8 21 / 39

Public-Key Cryptography

Schematic of a Public-Key Cryptosystem

K
2

K
1

EAVESDROPPER

 MESSAGE
 SOURCE

KEY SOURCE

COMMUNICATION CHANNEL

M K1C = E (M) MRECEIVER
WHO DECRYPTS

K2C USING D (C)

TRANSMITTER
ENCRYPTS M
TO E (M) K1

Note 1

In a public-key cryptosystem (PKC), it is not necessary for the key channel
to be secure.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 8 22 / 39

Public-Key Cryptography

Properties of a PKC

Unlike conventional cryptosystems, messages encrypted using public key
cryptosystems contain sufficient information to uniquely determine the
plaintext and the key (given enough ciphertext, resources etc)

The entropy contained in these systems is zero.

This is the exact opposite of a perfectly secret system like the
one-time pad.

Security in a public key cryptosystem lies solely in the computational cost
of computing the plaintext and/or private key from the ciphertext
(computional security).

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 8 23 / 39

Public-Key Cryptography

Hybrid Encryption

All PKCs in use today are much slower (by a factor of 1000-1500 or so)
than conventional systems like AES, so they are generally not used for bulk
encryption. Most common uses:

Encryption and transmission of keys for conventional cryptosystems
(hybrid encryption) – alternative to Diffie-Hellman

Authentication and non-repudiation via digital signatures (later).

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 8 24 / 39

The RSA Cryptosystem

The RSA Cryptosystem

Named after Ronald Rivest, Adi Shamir and Leonard Adleman, 1978.

Initially, NSA pressured the RSA inventors to keep their invention secret.

Independently invented in 1973 by Clifford Cocks of CESG
(Communications-Electronics Security Group, part of GCHQ) after he
learned about Ellis’ concept of non-secret encryption

Disclosed in 1997; see
http://cryptocellar.org/cesg/notense.pdf

Both encryption and decryption are modular exponentiations (same
modulus, different exponents):

Encryption: C ≡ Me (mod n)

Decryption: M ≡ Cd (mod n)

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 8 25 / 39

The RSA Cryptosystem

RSA Setup

The designer

1 Selects two distinct large primes p and q (each around 21536 ≈ 10463)

2 Computes n = pq and φ(n) = (p − 1)(q − 1).

3 Selects a random integer e ∈ Z∗φ(n) (so 1 ≤ e < φ(n) and

gcd(e, φ(n)) = 1).

4 Solves the linear congruence

de ≡ 1 (mod φ(n))

for d ∈ Z∗φ(n).

5 Keeps d , p, q, φ(n) secret and makes n and e public:

The public key is K1 = (e, n)
The private key is K2 = {d}

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 8 26 / 39

The RSA Cryptosystem

RSA Encryption and Decryption

Encryption: Messages for the designer are integers in Z∗n
E.g. divide a bit string into blocks of bit length ≤ blog2(n)c.
Interpret each block as an integer M with 0 < M < n via its binary
representation.

To send M encrypted, compute and send

C ≡ Me (mod n) where 0 < C < n .

Decryption: To decrypt C , the designer computes

M ≡ Cd (mod n) where 0 < M < n .

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 8 27 / 39

http://cryptocellar.org/cesg/notense.pdf

The RSA Cryptosystem

RSA Toy Example

Choose p = 11 and q = 19.

n = 11 · 19 = 209 and φ(n) = (11− 1)(19− 1) = 10 · 18 = 180.

Chose e = 7 and note that gcd(7, 180) = 1. Then d = 103.
(Verify that 7 · 103 ≡ 1 (mod 180).)

Public key: (7, 209)

Private key: 103

Encryption of M = 176 is 1767 ≡ 187 (mod 209).

Decryption of C = 187 is 187103 ≡ 176 ≡ M (mod 209).

(Use binary exponentiation for encryption and decryption.)

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 8 28 / 39

The RSA Cryptosystem

Proof of Correctness of RSA

Why do RSA encryption and decryption work?

Euler’s Theorem

If a, n ∈ Z with n > 0 and gcd(a, n) = 1, then aφ(n) ≡ 1 (mod n).

We have
Cd ≡ (Me)d ≡ Med (mod n),

Since d is chosen such that ed ≡ 1 (mod φ(n)) we have

ed = 1 + kφ(n) for some k ∈ Z,

and hence

Cd ≡ Med ≡ M1+kφ(n) ≡ M ·Mkφ(n) ≡ M(Mφ(n))k (mod n) .

Euler’s Theorem implies that Mφ(n) ≡ 1 (mod n), so we have

Cd ≡ M(Mφ(n))k ≡ M(1)k ≡ M (mod n) .
Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 8 29 / 39

The RSA Cryptosystem

What if gcd(M , n) 6= 1?

We have assumed that gcd(M, n) = 1 in the description of RSA and for
applying Euler’s Theorem. Is this a problem?

Can prove that encryption/decryption still work.

The probability that gcd(M, n) 6= 1 is 1/p + 1/q, i.e. very small.

Note that since n = pq and M < n, gcd(M, n) ∈ {1, p, q}. In the rare
case that this gcd exceeds 1, we will find a factor of n.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 8 30 / 39

More Number Theory – Modular Inverses

Modular Inverses

In RSA, given φ(n) = (p− 1)(q − 1) and e ∈ Z∗φ(n), the designer must find
d ∈ Z∗Φ(n) such that

ed ≡ 1 (mod φ(n)) .

This is a particular instance of the modular inverse problem: given m ∈ N
and a ∈ Z∗m, solve (efficiently) the congruence

ax ≡ 1 (mod m)

for x .

Note that this congruence is equivalent to the assertion that m divides
ax − 1, i.e. there exists y ∈ Z such that ax − 1 = ym. Equivalently:

Bezout’s Identity: ax −my = 1 = gcd(a,m).

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 8 31 / 39

More Number Theory – Modular Inverses

Linear Diophantine Equations

Given a, b ∈ Z, not both 0, solve the linear Diophantine equation

ax + by = gcd(a, b) .

Note: we may restrict to the case when a, b > 0:

We have gcd(a, b) = gcd(−a, b) = gcd(a,−b) = gcd(−a,−b).

If a < 0, use −a and solve for (−x , y); similarly for b < 0.

If a = 0 (and b > 0), the equation becomes

by = gcd(b, 0) = b

with solution y = 1 and x can be any integer; similarly for b = 0.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 8 32 / 39

More Number Theory – Modular Inverses

Euclidean Algorithm

Diophantine equations and the Euclidean algorithm are named after
Diophantus and Euclid, respectively. Both were Greek mathematicians
who lived in Alexandria around 300 BCE.

The Euclidean algorithm finds greatest common divisors via repeated
division with remainder. Given a, b ∈ Z, b > 0, and gcd(a, b) = 1:

a = q0b + r0 q0 = ba/bc, 0 < r0 < b

b = q1r0 + r1 q1 = bb/r0c, 0 < r1 < r0

r0 = q2r1 + r2 q2 = br0/r1c, 0 < r2 < r1
...

rn−3 = qn−1rn−2 + rn−1 rn−1 = gcd(a, b)

rn−2 = qnrn−1 + rn rn = 0

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 8 33 / 39

More Number Theory – Modular Inverses

Termination

Notice that the sequence of remainders (the ri) is non-negative and strictly
decreasing

Thus, the sequence is finite (algorithm terminates).

Theorem 1 (Lamé, 1844)

n < 5 log10 min(a, b).

More exactly, Lamé’s Theorem states

n ≤ logτ (min(a, b) + 1)

where τ = (1 +
√

5)/2 is the golden ratio.

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 8 34 / 39

More Number Theory – Modular Inverses

Extended Euclidean Algorithm Via Back Substitution

gcd(a, b) = rn−1 = rn−3 − qn−1rn−2 (1)

rn−2 = rn−4 − qn−2rn−3 (2)

rn−3 = rn−5 − qn−3rn−4 (3)
...

...

So gcd(a, b)
(1)
= rn−3 + (−qn−1)rn−2

(2)
= rn−3 + (−qn−1)(rn−4 − qn−2rn−3)

= (−qn−1)rn−4 + (1 + qn−1qn−2)rn−3

(3)
= (−qn−1)rn−4 + (1 + qn−1qn−2)(rn−5 − qn−3rn−4)

= (· · ·)rn−5 + (· · ·)rn−4

= · · ·
= (· · ·)a + (· · ·)b = xa + yb .

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 8 35 / 39

More Number Theory – Modular Inverses

Extended Euclidean Algorithm Via Bezout’s Method

Let A−2 = 0, A−1 = 1, B−2 = 1, B−1 = 0 and

Ak = qkAk−1 + Ak−2, Bk = qkBk−1 + Bk−2

for k = 0, 1,

We have An = a and Bn = b (n from above), and

AkBk−1 − BkAk−1 = (−1)k−1 .

Putting k = n yields

AnBn−1 − BnAn−1 = (−1)n−1

a(−1)n−1Bn−1 + b(−1)nAn−1 = 1 .

Thus, a solution of ax + by = 1 is given by

x = (−1)n−1Bn−1, y = (−1)nAn−1 .

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 8 36 / 39

More Number Theory – Modular Inverses

Bezout Tableau

Bezout’s method can be represented compactly as a tableau as follows:

q0 q1 q2 · · · qn−1

0 1 A0 A1 A2 · · · An−1

1 0 B0 B1 B2 · · · Bn−1

Each entry in the second and third row is computed by multiplying the
quotient qi in the current column by the previous entry in the same row
and adding it to the entry before that in the same row.

Example 4

Solve 44x + 13y = 1.

44 = 3 · 13 + 5
13 = 2 · 5 + 3

5 = 1 · 3 + 2
3 = 1 · 2 + 1

3 2 1 1

0 1 3 7 10 17
1 0 1 2 3 5

x = (−1)4−1 · 5 = −5
y = (−1)4 · 17 = 17

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 8 37 / 39

More Number Theory – Modular Inverses

Modular Inverses

Recall that Z∗m = {a ∈ Zm | gcd(a,m) = 1} is the set of integers between
1 and m that are coprime to m.

Z∗m consists of exactly those integers that have modular inverses:

for every a ∈ Z∗m, there exists x ∈ Z∗m such that ax ≡ 1 (mod m).

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 8 38 / 39

More Number Theory – Modular Inverses

Computing Modular Inverses

Given a ∈ Z∗m, solve the linear congruence ax ≡ 1 (mod m) for x ∈ Z∗m.

We want x such that

m | ax − 1⇐⇒ ax − 1 = ym⇐⇒ ax −my = 1

for some y ∈ Z.

Can be solved using the Extended Euclidean Algorithm.

We only need to compute the Bi because we only need x , not y .

When using Bezout’s method, be sure to start with a = q0m + r0,
even if a < m (so q0 = 0), else you get the wrong count for the
number n of division steps.

Always check your answer!

Renate Scheidler (University of Calgary) CPSC 418/MATH 318 Week 8 39 / 39

	Message Authentication Codes
	Recap
	HMAC
	KMAC
	Authenticated Encryption

	Attacks on MACs
	Where are we at?
	Public-Key Cryptography
	The RSA Cryptosystem
	More Number Theory – Modular Inverses

